

# **ACTUADORES LINEALES**

**SERIE UAL / UBA** 

**SAC 09** 



# **CON HUSILLO TRAPECIAL**

| CAP. DE CARGA | VEL. LINEAL  |
|---------------|--------------|
| ≤ 850 Kg      | ≤ 450 mm/seg |

# **CON HUSILLO DE BOLAS**

| CAP. DE CARGA | VEL. LINEAL         |
|---------------|---------------------|
| ≤ 500 Kg      | ≤ <b>290</b> mm/seg |



# CERTIFICADO DE APROBACIÓN

Certificamos que el Sistema de Gestión de Calidad de:

# COTRANSA COMERCIAL DE TRANSMISIONES, S.A. Mungia, Bizkaia España

ha sido aprobado por Lloyd's Register Quality Assurance de acuerdo con las siguientes Normas de Sistemas de Gestión de Calidad:

ISO 9001:2008

El Sistema de Gestión de Calidad es aplicable a:

Gestión de ventas, soporte técnico, ensamblaje y reparación de: reductores, motoreductores y variadores de velocidad, mesas de giro intermitente, gatos mecánicos y actuadores lineales, limitadores de par y elementos de transmisión mecánica, unidades lineales, estructuras de aluminio y rodillos motorizados. Diseño y fabricación de transportadores.

Aprobación

Certificado No: SGI 1198074

Aprobación Original:

5 de Junio 1998

Certificado en Vigor:

3 de Abril 2009

Caducidad del Certificado: 11 de Diciembre 2009



Emitido por: LRQA, Ltd. Operaciones España





# **ÍNDICE**

|     | $N^{0}$                                   | DE PÁG. |
|-----|-------------------------------------------|---------|
| 1-  | INTRODUCCIÓN A LOS ACTUADORES LINEALES    | SAC1    |
| 2-  | GAMA DE ACTUADORES                        | SAC2    |
| 3-  | CARACTERÍSTICAS CONSTRUCTIVAS             | SAC3    |
| 4-  | CARACTERÍSTICAS TÉCNICAS                  | SAC6    |
| 5-  | SELECCIÓN DEL ACTUADOR                    | SAC8    |
| 6-  | CODIFICACION                              | SAC18   |
| 7-  | INDICE DE IRREVERSIBILIDAD                | SAC19   |
| 8-  | PROGRAMA DE FABRICACION serie UAL         | SAC20   |
| 9-  | DIMENSIONES serie UAL                     | SAC23   |
| 10- | PROGRAMA DE FABRICACION serie UBA         | SAC26   |
|     | DIMENSIONES serie UBA                     |         |
| 12- | FINALES DE CARRERA                        | SAC32   |
| 23- | ACCESORIOS                                | SAC36   |
| 14- | INSTALACION - MANUTENCION - LUBRIFICACION | SAC38   |
| 15- | VERSIONES ESPECIALES                      | SAC39   |



#### 1.- INTRODUCCIÓN A LOS ACTUADORES LINEALES

Los actuadores lineales electromecánicos son cilindros mecánicos motorizados que transforman el movimiento de giro de un motor en un desplazamiento lineal del vástago.

La definición de actuador lleva implícita la garantía de un movimiento totalmente controlado en velocidad y posicionamiento, en función de la configuración mecánica y del accionamiento de entrada. Están proyectados y construidos para aplicarlos en las situaciones más exigentes desde el punto de vista de:

- ciclo de funcionamiento
- · condiciones ambientales
- cargas aplicadas
- velocidad lineal

Pueden trabajar en tiro o por empuje, esto es, a tracción o compresión.

Según su configuración pueden ser:

- Irreversibles bajo carga, capaces de sostener cargas aplicadas en pausa, sin variar la posición cuando el motor esta parado.
- Reversibles bajo carga, en este caso para sostener la carga en pausa sin variar la posición, el motor debe tener freno.

Se caracterizan por su elevada regularidad en funcionamiento con carga o sin ella y por sus bajos niveles de ruido. El movimiento se efectúa a velocidad uniforme.

Su aplicación es tan sencilla como crear un accionamiento de tiro o empuje con un simple mando de marcha / paro hasta donde se desee. Mediante accesorios como encoder o potenciómetro para el control de la posición, motores con dinamo tacometrica y accionamientos servocontrolados llegamos a conseguir un eje totalmente controlado.

La instalación es sencilla y económica requiriendo solamente un tope anterior y posterior como un cilindro normal.

Pueden sustituir a cilindros neumáticos e hidráulicos por diversos motivos:

- Precisión de funcionamiento en tiro o empuje.
- Precisión de posicionamiento en la parada.
- Mantenimiento de la posición bajo carga.
- Consumo eléctrico solamente durante el movimiento
- Posibilidad de ser instalados en ambientes agresivos solo necesita cables eléctricos para el control.
- Mayor seguridad en presencia de cargas suspendidas (posibilidad de seguridad mecánica intrínseca)
- Posibilidad de uso en ambientes con temperaturas muy bajas, sin problemas de congelación.
- Posibilidad de uso en ambientes con temperaturas muy altas, sin peligro de incendio.

El campo de utilización de los actuadores lineales es amplísimo. Son utilizados donde la aplicación industrial requiere gran seguridad o control del movimiento lineal de posicionamiento, deslizamiento y elevación.

La amplia gama de tamaños, de carreras, de tipos de motor, de velocidades lineales, así como de accesorios disponibles, nos facilita su adaptación a nuevas instalaciones, sustituyendo adecuadamente por razones de economía y de prestaciones finales, los complicados sistemas hidráulicos o neumáticos.



#### 2.- GAMA DE ACTUADORES

La gama de actuadores se compone de tres grandes familias, diferenciadas fundamentalmente por la transmisión del accionamiento:

- Con reductor de sin fin corona de precisión y motor ortogonal respecto al eje del cilindro.
- Con correa y polea dentada y motor en paralelo al eje del cilindro actuador.

Ambas familias pueden llevar accionamiento lineal:

- Con husillo trapecial de una o dos entradas.
- · Con husillo de bolas.

#### GAMA DE ACTUADORES

Serie UAL: transmisión con correa y polea dentada y husillo trapecial. Serie UBA: transmisión con correa y polea dentada y husillo de bolas.



#### SERIE UAL Y SERIE UBA

#### UAL 0 y UBA 0

Actuador lineal en versión compacta con motor integrado. Solo disponible con motor de corriente continua 24 v. o 12 v. con freno o sin el.

#### • UAL 1-2-3-4 y UBA 1-2-3-4

Serie de cuatro tamaños con carcasa de fundición de aluminio. Motores integrales IEC B14 de corriente alterna trifásicos, monofásicos y de corriente continua de 24v o 12v, con freno o sin el.



#### 3.- CARACTERÍSTICAS CONSTRUCTIVAS

Los actuadores lineales están proyectados y construidos totalmente con avanzadas tecnologías y maquinas de CNC.

Sistema de calidad según la norma ISO 9001.

Se efectúa el colaudo sistemático en toda la línea y en cada fase productiva con el fin de homogeneizar la calidad de la producción.

Control y colaudo de funcionamiento del producto acabado para garantizar la calidad y fiabilidad del mismo.

#### Transmisión del accionamiento.

- Reductor de sinfín corona de precisión, con alto rendimiento, perfil ZI, juego angular reducido. Corona helicoidal en bronce EN 1982 – Cu Sn12 - C. Sin fin en acero cementado y templado 20MnCr5 UNI 7846 con perfil y ejes rectificados.
- Polea dentada UNI 8530 en aluminio para pequeñas inercias o en acero. Correa dentada UNI 8529 o de perfil HTD si lo solicita el cliente.

#### Carcasa:

Proyecto y ejecución de la carcasa de forma monobloc para obtener no solo forma compacta y robusta capaz de soportar elevadas cargas axiales, sino también un elevado grado de precisión gracias a su elaboración mecánica. Los materiales utilizados son de alta resistencia.

- Fundición de aluminio bonificado EN 1706 AC Al Si 10 Mg T6.
- Fundición esferoidal EN 1563 615 500 7.

#### Tuerca trapecial en bronce perfil UNI ISO 2901-2904

- Tuerca trapecial de una entrada en bronce EN 1982 Cu Al 9 C
- Tuerca trapecial de dos entradas en bronce EN 1982 Cu Sn 12 C
- Juego axial máximo de la tuerca nueva (0,10÷0,12) mm.

#### Husillo trapecial perfil UNI ISO 2901-2904

- Tallado ó laminado.
- Material acero C 43 UNI 7847
- Sometido a distensionado para garantizar el correcto alineamiento en funcionamiento.
- Error máximo del paso ± 0,05 mm sobre 300 mm de longitud.

#### Tuerca de bolas

- Es un diseño propio
- Dimensionada para garantizar elevada capacidad de carga y alto rendimiento.
- Construida en acero de cementación y templada 18 NiCrMo5 UNI 7846
- · Perfil rectificado.
- Juego axial máximo (0,07÷0,08)mm

#### Husillo de bolas

- Templado y laminado.
- Material 42 CrMo4 UNI 7845
- Error máximo del paso ±0,025mm sobre 300 mm de longitud.



#### Vástago de empuje.

- · Acero cromado de gran espesor.
- Material St 52 DIN 2391
- Espesor mínimo del cromado 5/100 mm
- Tolerancia dimensional sobre el diámetro exterior ISO f7.
- Por solicitud del cliente se pueden servir vástagos en acero INOX AISI 304.

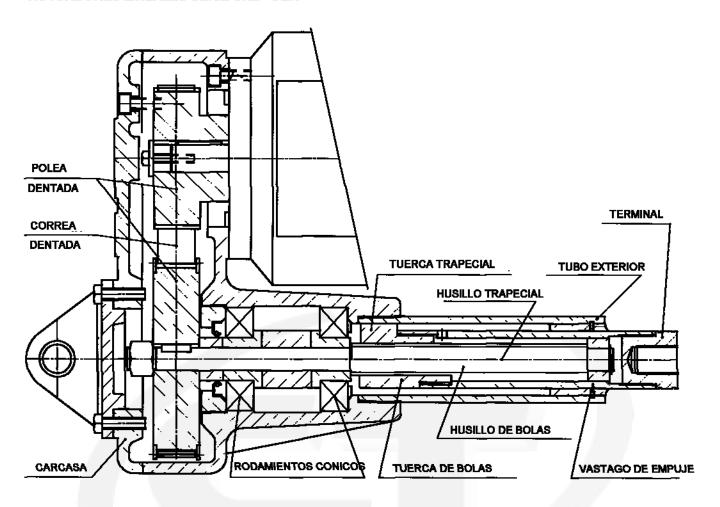
#### Tubo exterior de aluminio o acero.

- Aluminio estirado en frío de gran espesor.
- Material aleado 6060 UNI 90006/1
- Anodizado 20 μm
- Tolerancia interna ISO H9
- Acero estirado en frío
- Material St 52.2 DIN 2391
- Zincado exterior
- Tolerancia interna ISO H10 ÷ H11

#### **Rodamientos**

- Radiales de bolas en el eje del motor
- De rodillos cónicos contrapuestos sobre el eje del actuador para garantizar ausencia de juego axial y alta capacidad de carga a tracción y compresión.

#### Terminal del vástago.


En acero INOX AISI 303

#### Final de carrera y soporte posterior.

- Aleación de aluminio.
- Pernos de acero INOX AISI 303
- Casquillo en plástico OT 58 UNI 5705/65



#### **ACTUADORES LINEALES SERIE UAL - UBA**





#### 4.- CARACTERÍSTICAS TÉCNICAS

La tabla de características técnicas nos aporta para cada serie de actuadores, los principales datos de identificación, constructivos y de prestaciones. La consulta a esta tabla se recomienda cuando se necesitan con detalle las principales diferencias constructivas y de prestaciones de los diferentes tamaños de una misma serie. Los datos aportados en la tabla son de especial interés cuando se quiere utilizar los actuadores lineales para accionamientos con control de la posición y la velocidad.

#### CARACTERÍSTICAS GENERALES

- Diámetro externo: diámetro externo del vástago de empuje.
- Diámetro del tubo de protección: diámetro externo del tubo exterior.
- Brida para amarre de motor: dimensiones de la brida normalizada motor IEC UNELMEC B14 B5.
- Carga dinámica máxima: máxima carga que el actuador es capaz de accionar. La carga máxima se obtiene en base a la velocidad, que esta en función de la relación interna (RL). Al aumentar la velocidad la capacidad de carga se reduce, debido a que el actuador tiene el mismo motor con potencia instalada constante.
- Carga estática máxima a tracción o compresión: Carga máxima admisible con el actuador parado a tracción o compresión. En general el valor máximo a compresión es mayor que el de tracción por la mayor resistencia mecánica de la carcasa a este tipo de esfuerzo. La carga máxima a compresión esta condicionada por la longitud de la carrera (ver gráfico pag. 12 y 13).
- Relación de reducción: es la relación interna de reducción de la transmisión entre el motor eléctrico y el husillo de movimiento lineal.
- Carrera lineal para una vuelta del eje de entrada: indica la carrera efectiva lineal en mm realizada por el vástago por vuelta del eje de entrada. Esta información es útil cuando el actuador lleva incorporado un encoder sobre el eje entrada para calcular los impulsos necesarios para cada unidad lineal de carrera.

Ejemplo: Encoder 100 impulsos por vuelta de entrada.

Carrera por vuelta de entrada 0,25 mm.

De lo que se deduce que son necesarios 400 impulsos por 1 mm carrera.

• **Peso**: peso en kgs. Referido a un actuador con una carrera de 100 mm sin motor. El peso total de un actuador puede ser estimado tomando el peso con carrera 100 mm, añadiendo el peso de cada 100 mm de carrera.

#### CARACTERÍSTICAS DE LOS ACTUADORES CON HUSILLO TRAPECIAL.

- Husillo trapecial de una entrada: Se indica el diámetro exterior del husillo y el paso del filete trapecial. El paso indica el avance o carrera en mm del actuador por vuelta del husillo trapecial es decir por vuelta de la corona conducida del reductor de la transmisión de entrada.
- Husillo trapecial de dos entradas: Se indica el diámetro exterior del husillo y el paso del filete trapecial. El paso efectivo indica el avance o carrera en mm del actuador por vuelta del husillo trapecial. El valor indicado entre paréntesis es el paso entre dos filetes contiguos

#### CARACTERÍSTICAS DE LOS ACTUADORES CON HUSILLO DE BOLAS.

- **Diámetro por paso:** es el diámetro exterior del husillo y el paso del filete.
- Carga dinámica C: es la carga máxima de funcionamiento admitida por la tuerca, valor de referencia para el calculo de su vida.
- Carga estática Co: es la carga máxima admitida por la tuerca a compresión o a tracción.

Los valores de las cargas máximas admitidas por la tuerca de bolas son la referencia para el calculo de vida de la misma. No se debe considerar como prestaciones del actuador por que estas vienen limitadas por la potencia del motor o la resistencia de otros componentes mecánicos del actuador.

• Nº de canales de bolas: indica el nº de vueltas completas bajo carga en el cual las bolas circulan.



# ACTUADORES LINEALES CON HUSILLO TRAPECIAL Serie UAL

|                                                                                     | TAI                             | MAÑO  | UAL 0       | UAL 1        | 1101.2       | UAL 3        | UAL 4            |  |
|-------------------------------------------------------------------------------------|---------------------------------|-------|-------------|--------------|--------------|--------------|------------------|--|
| CARACTERÍSTICAS                                                                     |                                 |       | UALU        | UAL          | UAL 2        | UAL 3        | UAL 4            |  |
| Diámetro del vástago [mm]                                                           |                                 |       | 25          | 25           | 30           | 35           | 40               |  |
| Diámetro del tubo de p                                                              | rotección                       | [mm]  | 36          | 36           | 45           | 55           | 60               |  |
| Tamaño de la brida mo                                                               | otor IEC                        |       | _           | 56 B14       | 63 B14       | 71 B14       | 80 B14<br>90 B14 |  |
| Carga dinámica máx.                                                                 |                                 | [N]   | 500         | 1.600        | 2.500        | 5.100        | 8.500            |  |
| Cargo actático máy                                                                  | A tracción                      | [N]   | 3.000       | 4.000        | 6.000        | 10.000       | 12.000           |  |
| Carga estática máx.                                                                 | A compresión                    | n [N] | 3.000       | 4.000        | 6.000        | 10.000       | 12.000           |  |
| Husillo trapecial de 1 e                                                            | ntrada                          |       | Tr 13.5 × 3 | Tr 13.5 × 3  | Tr 16 × 4    | Tr 18 × 4    | Tr 22 × 5        |  |
| Husillo trapecial de 2 e                                                            | Husillo trapecial de 2 entradas |       |             | Tr 14×8 (P4) | Tr 16×8 (P4) | Tr 18×8 (P4) | Tr 22×10 (P5)    |  |
| Dalasión da nadvasión                                                               | Rápida                          | RV    | 1:1         | 1: 1,33      | 1 : 1,4      | 1:1,04       | 1:1,07           |  |
| Relación de reducción (Velocidad)                                                   | Normal                          | RN    | 1:2         | 1 : 2,15     | 1:2,13       | 1:2          | 1:1,94           |  |
| (VClocidad)                                                                         | Lenta                           | RL    | _           | 1:3          | 1:2,83       | 1:2,92       | 1:2,93           |  |
| Carrera lineal por vuelt                                                            | ta del eje de                   | RV1   | 3           | 2,25         | 2,86         | 3,84         | 4,69             |  |
| entrada. [mm]                                                                       | •                               | RN1   | 1,5         | 1,39         | 1,88         | 2            | 2,57             |  |
| (Husillo trapecial de 1                                                             | entrada)                        | RL1   | _           | 1            | 1,41         | 1,37         | 1,70             |  |
| Carrera lineal por vuelt                                                            | ta del eje de                   | RV2   | 8           | 6            | 5,71         | 7,68         | 9,38             |  |
| entrada. [mm]                                                                       |                                 | RN2   | 4           | 3,71         | 3,75         | 4            | 5,14             |  |
| (Husillo trapecial de 2                                                             | entradas)                       | RL2   | _           | 2,67         | 2,82         | 2,74         | 3,41             |  |
| Peso (referido al actuador de carrera<br>100mm sin motor, lleno de lubricante) [kg] |                                 | 2,2   | 3,3         | 5            | 8            | 11           |                  |  |
| Incremento de peso pa<br>100mm de carrera                                           | ara cada                        | [kg]  | 0,3         | 0,3          | 0,5          | 0,8          | 0,9              |  |

# **ACTUADORES LINEALES CON HUSILLO DE BOLAS Serie UBA**

| CARACTERÍSTI                     | CAS                       | TAM                       | 1AÑO | UBA 0      | UBA 0 | UBA 1  | UBA 2  | UBA 3  | UBA 4            |
|----------------------------------|---------------------------|---------------------------|------|------------|-------|--------|--------|--------|------------------|
| Diámetro del vás                 | Diámetro del vástago [mm] |                           |      | 30         | 25    | 25     | 30     | 35     | 40               |
| Diámetro del tub                 | o de p                    | rotección                 | [mm] | 45         | 36    | 36     | 45     | 55     | 60               |
| Tamaño de la br                  | ida mo                    | otor IEC                  |      | _          | -     | 56 B14 | 63 B14 | 71 B14 | 80 B14<br>90 B14 |
| Carga dinámica                   | máx.                      | (1)                       | [N]  | 170        | 420   | 1750   | 2900   | 3200   | 5000             |
| Cargo octáticos                  | máv                       | A tracción                | [N]  | 3.000      | 3.000 | 4.000  | 6.000  | 10.000 | 12.000           |
| Carga estáticas                  | IIIax.                    | A compresión              | [N]  | 3.000      | 3.000 | 4.000  | 6.000  | 10.000 | 12.000           |
|                                  | Diám                      | etro × Paso               |      | 12.7×12.7  | 14    | × 5    | 16 × 5 | 20 × 5 | 25 × 6           |
|                                  | Carga                     | a dinámica C              | [N]  | 5.250      | 8.4   | 100    | 11.260 | 12.300 | 19.380           |
| Husillo de bolas                 | Carga                     | a estática C <sub>0</sub> | [N]  | 9.000      | 8.5   | 570    | 11.570 | 15.040 | 29.420           |
|                                  | Diám                      | etro de la bola           | [mm] | 3,175      | 3,1   | 75     | 3,175  | 3,175  | 3,969            |
|                                  | N° de                     | canales de bo             | las  | 2 × 1.5    | 2     | 2      | 3      | 3      | 3                |
|                                  |                           | Rápida                    | RV   | 1:1        | 1:1   | 1:1,33 | 1:1,4  | 1:1,04 | 1:1,07           |
| Relación de redu                 | ucción                    | Normal                    | RN   | 1:2        | 1:2   | 1:2,15 | 1:2,13 | 1:2    | 1 : 1,94         |
|                                  |                           | Lenta                     | RL   | _          | _     | 1:3    | 1:2,83 | 1:2,92 | 1:2,93           |
| 0                                |                           |                           | RV1  | 12,7 (RV2) | 5     | 3,75   | 3,57   | 4,8    | 5,62             |
| Carrera lineal po entrada. [mm]  | r vueit                   | a dei eje de              | RN1  | 6,35 (RN2) | 2,5   | 2,32   | 2,34   | 2,5    | 3,09             |
| entiaua. Įiiiiij                 |                           |                           | RL1  | _          | _     | 1,67   | 1,76   | 1,71   | 2,05             |
| Peso (referido al 100mm sin moto |                           |                           | [kg] | 2,2        | 2,2   | 3,3    | 5      | 8      | 11               |
| Incremento de p<br>de carrera    | eso pa                    | ra cada 100mr             |      | 0,3        | 0,3   | 0,3    | 0,5    | 0,8    | 0,9              |

<sup>1)</sup> Calculado para una vida del husillo de bolas al menos de 2000 horas bajo carga, sin golpes ni vibraciones.



#### 5.- SELECCIÓN DE ACTUADOR

Los actuadores lineales mecánicos transforman el movimiento de rotación en uno lineal. Esta transformación provoca una perdida de potencia entre el husillo y la tuerca. Esta perdida de potencia es mayor o menor según se trate de un husillo trapecial de una o dos entradas o de un husillo de bolas. Por lo tanto para la correcta selección del actuador y según la aplicación debemos tener en cuenta, el ciclo de trabajo o más exactamente el factor de utilización solicitado en función de las condiciones de trabajo de la aplicación, y contrastarlo con el factor de intermitencia admitido por el actuador.

Se define factor de utilización sobre 10 minutos Fu (%) solicitado por la aplicación, la expresión en porcentaje del cociente entre el tiempo de trabajo efectivo bajo carga en el tiempo de referencia de 10 minutos y el periodo de referencia mismo.

Se define como factor de intermitencia Fi (%) admitido por el actuador a la expresión que representa el porcentaje de tiempo referida a 10 minutos, durante la cual el actuador puede trabajar en condiciones de carga máxima indicadas en catalogo y con una temperatura ambiente de 25°c, sin que aparezcan problemas debidos al calentamiento de los componentes internos.

Resulta por tanto que la limitación de empleo de los actuadores puede ser debida a la potencia térmica admitida y no a la potencia mecánica máxima.

Se recomienda y aconseja para una correcta selección del actuador lineal que se sigan los criterios que a continuación se relacionan:

#### **COMO SELECCIONAR UN ACTUADOR LINEAL**

#### 1. Calculo del factor de utilización Fu (%)

Relacionar las prestaciones y características técnicas de la aplicación:

- 1.1 Velocidad lineal.
- 1.2 Tipo de carga a tracción o compresión.
- 1.3 Ciclo de funcionamiento.
- 1.4 Carrera.
- 1.5 Tipo de motor necesario.

Calcular el factor de utilización Fu (%) sobre 10 minutos.

#### 2º Seleccionar la serie del actuador.

2.1 Fu  $\leq$  30% Seleccionamos actuadores con husillo trapecial serie UAL.

2.2 Fu  $\geq$  50% Seleccionamos actuadores a bolas seria UBA.

2.3 30% < Fu < 50% Se dan dos posibilidades:

- Seleccionar por precaución serie a bolas.
- Seleccionar de la seria husillo trapecial, previa comprobación de la carga admisible en función de un factor de utilización mayor de 30%. Ver el gráfico carga-factor de utilización de la pag.17.

En general la serie de bolas tiene un costo superior a la equivalente de husillo trapecial, mientras que la selección de la serie de husillo trapecial, con Fu > 30% comporta un aprovechamiento de las prestaciones máximas, con la necesidad de seleccionar tamaños mayores.

La serie de bolas necesita un motor freno para sostener la carga durante la pausa. El motor freno es de todas formas necesario cuando se desea una precisión de parada o repetibilidad sea con husillo de bolas o trapecial.

La obligación de utilizar motor freno es aun mayor cuando la velocidad lineal es elevada.

Por lo tanto en estas condiciones la selección del actuador va ligada no solamente a cuestiones técnicas sino también económica.



#### **CRITERIOS DE SELECCIÓN**

#### 3º Selección del tamaño en 1ª aproximación

Utilizar el gráfico de la pag. 12 para la selección del tamaño del actuador en primera, aproximación conociendo la carga y velocidad requerida por la aplicación.

#### 4º Verificación mecánica.

Efectuar las siguientes verificaciones mecánicas con el tamaño preseleccionado:

- 4.1 Verificar la resistencia mecánica a flexión con carga en empuje. La verificación debe llevarse a cabo con carga a compresión y carrera elevada, utilizando el gráfico de la pag.12 y 13.
- 4.2 Verificación mecánica del funcionamiento.

Control de la velocidad de rotación critica en flexión y torsión para el husillo trapecial o de bolas. Esta verificación debe llevarse a cabo con ayuda del gráfico de la pag.14 y 15, es necesaria esta comprobación en caso de velocidad elevada y carrera larga.

El tamaño seleccionado puede ser confirmado o será necesario seleccionar un tamaño superior.

#### 4.3 Verificar la vida solicitada.

Actuador con husillo trapecial.

Las prestaciones indicadas en catalogo son las máximas admisibles con factor de intermitencia máximo 30% en un periodo de 10 minutos, con temperatura ambiente de 25 °c. La vida se ve fuertemente afectada además de por la carga, por la velocidad lineal, por la temperatura ambiente y por el factor de utilización. Para una selección mas precisa consultar al departamento técnico de COTRANSA.

#### Actuador de bolas.

Las prestaciones indicadas en catalogo son las máximas admisibles con factor de intermitencia máximo 100%, con temperatura ambiente de 25  $^{\circ}$ c, y vida mínima  $L_{10}$ =2000 horas.

Para necesidades de vida distintas a las indicadas consultar el gráfico de la pag.17 carga - Velocidad para varios niveles de vida en horas.

#### 5º Selección definitiva del tamaño.

Con el tipo de motor solicitado, la serie y el tamaño seleccionados, verificar en la tabla de prestaciones la velocidad que admite las prestaciones de carga y velocidad deseadas.

Nos quedamos con las prestaciones aceptables más próximas a las solicitadas. Modificar si es necesario el tamaño para satisfacer plenamente las prestaciones solicitadas.

#### 6º Confirmación de la selección.

Con las prestaciones definitivas; carga y velocidad en base al principio de funcionamiento, calcular el factor de utilización real.

Verificar que el factor de utilización sea inferior o igual al factor de intermitencia admitido por el actuador preseleccionado. Fu ≤ Fi.

En caso contrario repetir la selección desde el punto nº 2.

#### 7º Selección de los accesorios.

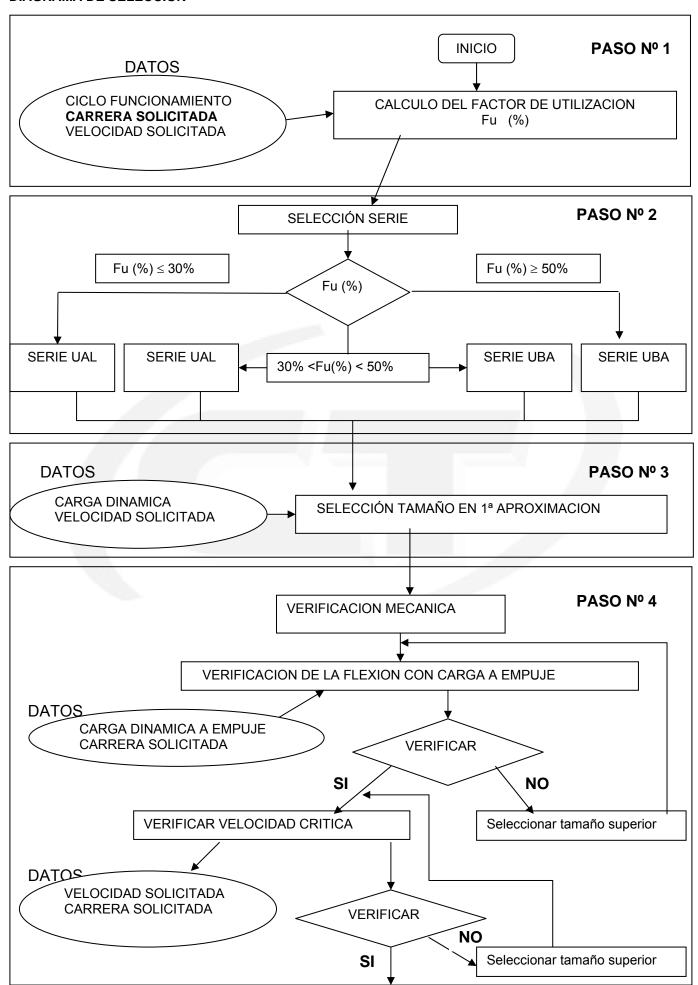
7.1 terminal del vástago.

7.2 dispositivo final de carrera.

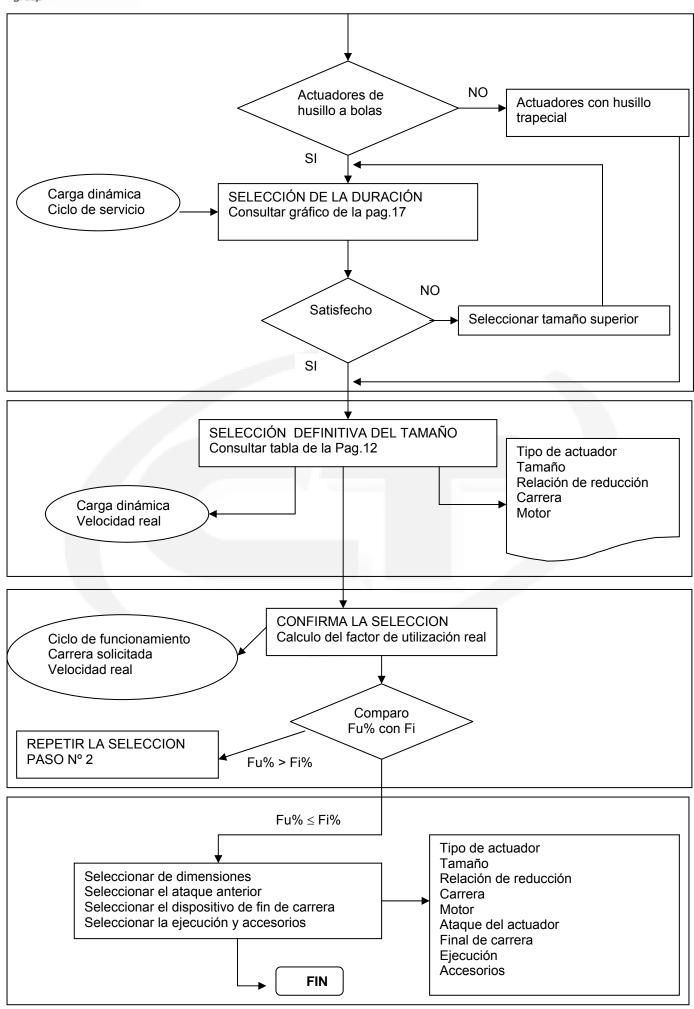
7.3 tipo de ejecución.

7.4 otros accesorios.

#### 8º Dimensiones del actuador y accesorios de fijación.

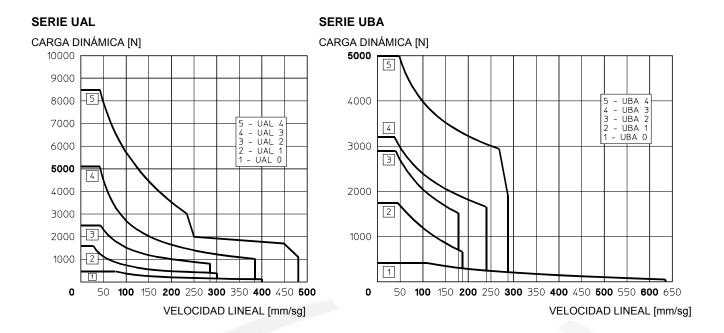

Consultar la tabla de dimensiones para conocer las medidas de fijación del actuador y de sus accesorios y verificar que son compatibles con la aplicación.

#### 9º Codificación del pedido.


Ver ejemplo de la pag. SAC18.

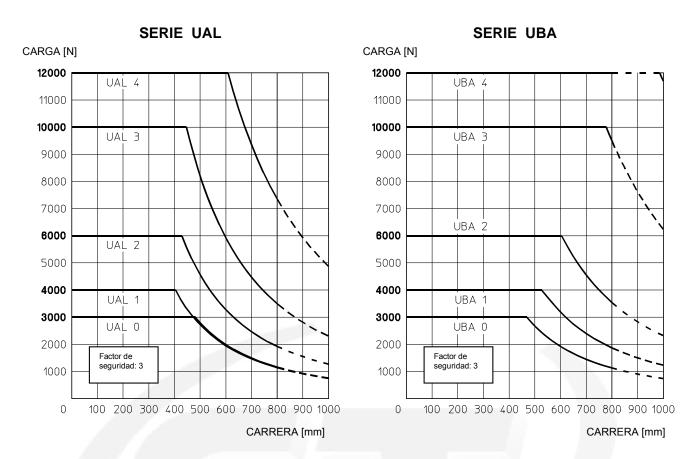


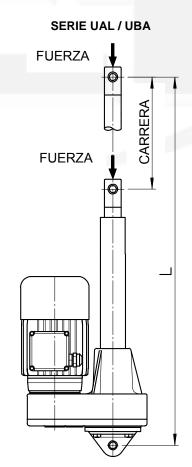
#### **DIAGRAMA DE SELECCIÓN**







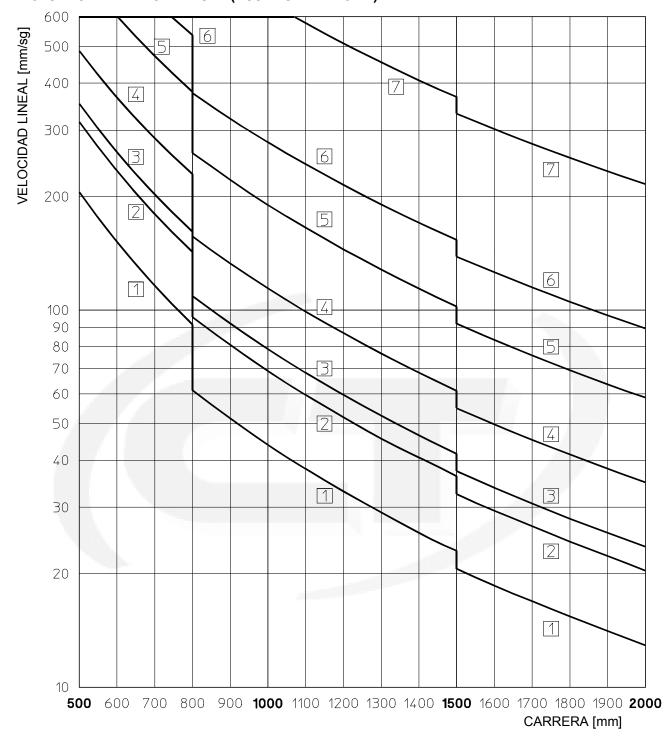





# **GRÁFICOS DE SELECCIÓN DE LOS ACTUADORES**





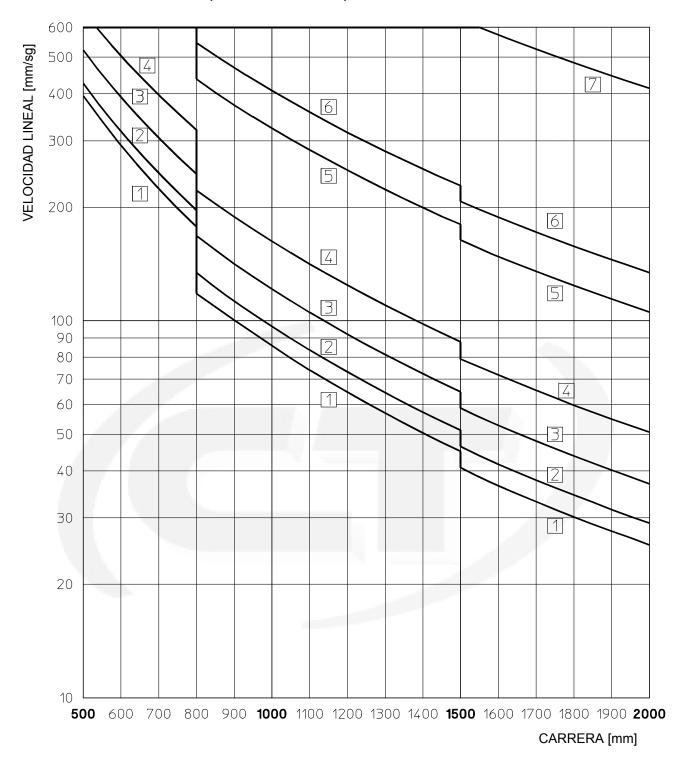
# **CARGAS ADMISIBLES A COMPRESIÓN**








# VELOCIDAD MÁXIMA ADMISIBLE EN FUNCIÓN DE LA CARRERA

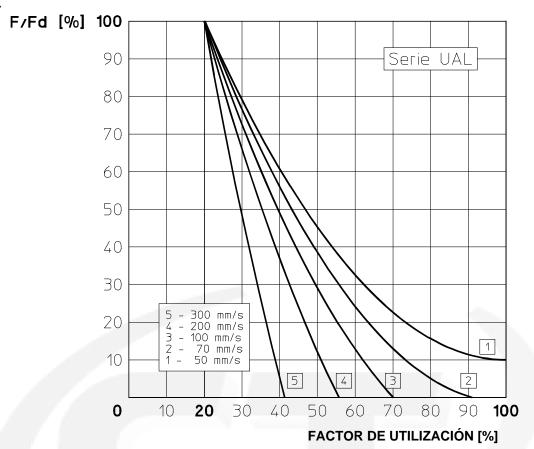

# ACTUADOR LINEAL SERIE UAL (HUSILLO TRAPECIAL)



|   | DESIGNACIÓN |       |  |  |  |  |  |
|---|-------------|-------|--|--|--|--|--|
| 4 | UAL 4       |       |  |  |  |  |  |
| 3 | UAL 3       |       |  |  |  |  |  |
| 2 | UAL 2       |       |  |  |  |  |  |
| 1 | UAL 0       | UAL 1 |  |  |  |  |  |



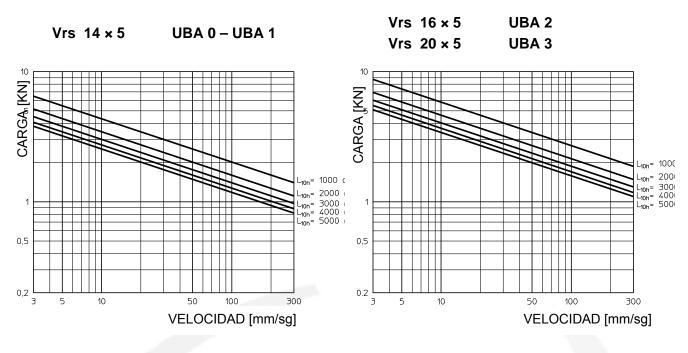
# **ACTUADOR LINEAL SERIE UBA (HUSILLO DE BOLAS)**

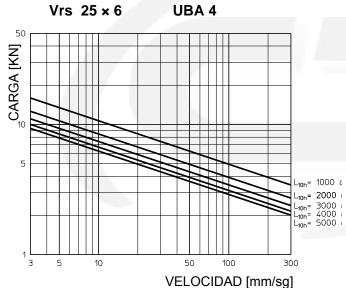



|   | DESIGNACIÓN |       |  |  |  |  |
|---|-------------|-------|--|--|--|--|
| 4 | UBA 4       |       |  |  |  |  |
| 3 | UBA 3       |       |  |  |  |  |
| 2 | UBA 2       |       |  |  |  |  |
| 1 | UBA 0       | UBA 1 |  |  |  |  |



#### DIAGRAMA DE FACTOR DE UTILIZACIÓN


# **SERIE UAL**




F – Carga dinámica solicitada por la aplicación. Fd – Carga dinámica que soporta el actuador (Ver prestaciones en la tabla de la pag. 20 a la pag. 22).



#### DIAGRAMA CARGA – VIDA DE HUSILLO DE BOLAS







#### CODIFICACION

| <u>UAL</u>        | <u>1</u>  |           | RN2       | C300      | <u>FO</u> | <b>FCE</b>    | VERS.3        | <u>RH</u>    |
|-------------------|-----------|-----------|-----------|-----------|-----------|---------------|---------------|--------------|
| 1                 | 2         |           | 3         | 4         | 5         | 6             | 7.A           | 7.B          |
| <b>MOTOR</b>      | 0,25 Kw   | 2 POLOS 3 | B FASES   | 230/400   | V 50 Hz   | <u>IP55 F</u> | <b>FRENO</b>  | <u>w</u>     |
| 8                 |           | 8.A       |           | 8.        | .В        | 8.C           | 8.D           | 8.E          |
| <b>ACCESORIOS</b> | <u>SP</u> | <u>FI</u> | <u>FS</u> | <u>AR</u> | EH 53     | <b>MSB</b>    | <b>FUELLE</b> | <b>OTROS</b> |
| 9                 | 9.A       | 9.B       | 9.C       | 9.D       | 9.E       | 9.F           | 9.G           | 9.H          |

1. Series de actuadores UAL; UBA 2. Tamaño UAL / UBA 0; 1; 2; 3; 4 RH1; RV1; RN1; RL1; RXL1 3. Relación interna RH2; RV2; RN2; RL2; RXL2 4. Código de carrera C100; C200; C300; C400; C500; C600; C700; C800 (carreras especiales disponibles bajo pedido) BA Terminal base con aquiero roscado. 5. Amarre frontal FO Horquilla ROE Cilíndrico FL Brida TF Con aquiero Amarre posterior Estándar: Ver dimensiones para cada tamaño de actuador Rotula posterior Bajo pedido disponible a 90°, código RPT 90° 6. Dispositivo final de carrera **FCE** Interruptor eléctrico FCM(NC) Final de carrera magnético normalmente cerrado FCM (NA) Final de carrera magnético normalmente abierto Detector de proximidad inductivo **FCP** 7.A Versiones de entrada Vers. 1 Un eje de entrada Doble eje de entrada Vers. 2 Vers. 3 Brida motor Vers. 4 Brida motor + 2° eje Vers. 5 Campana + acoplamiento Vers. 6 Campana + acoplamiento + 2º eje 7.B Posición del eje de entrada DH En el lado derecho SH En el lado izquierdo, bajo pedido eje de entrada a 180º

#### **MOTOR**

Motor eléctrico Corriente alterna trifásico AC Corriente alterna monofásico AC

Corriente continua CC

8.A Potencia y número de polos 2 polos

4 polos

Trifásico estándar 230 / 400 V 8.B Tensión 50Hz

> Monofásico 230 V 50Hz

Corriente continua 24 V, 12 V

IP 55 8.C Protección Estándar para motor sin freno monofásicos o trifásicos

IP 54 Estándar para motores AC con freno y motores CC

Aislamiento Bajo pedido clases especiales de protección y

aislamiento

8.D Motor freno Directamente cableado o cableado independiente

8.E Posición de la caja de bornas Estándar N, S, E Bajo pedido

#### **ACCESORIOS**

9.A SP Soporte posterior Brida intermedia 9.B FΙ FS 9.C Limitador de par Dispositivo antirrotación 9.D AR 9.E EH 53

Encoder incremental rotativo bidireccional

9.F MSB Tuerca de seguridad

9.G Fuelle В

9.H Otros Dispositivos especiales bajo pedido



#### 7.- INDICE DE IRREVERSIBILIDAD

Un actuador es irreversible cuando:

- Aplicando una carga a tracción o compresión estando el actuador en posición de parada, el actuador no comienza a moverse. (índice de irreversibilidad estático)
- Al desconectar el motor eléctrico de un actuador en movimiento, este se detiene incluso si se le somete a una carga tanto a tracción como a compresión. (índice de irreversibilidad dinámico)

Las condiciones de reversibilidad y de irreversibilidad se definen en las siguientes cuatro situaciones:

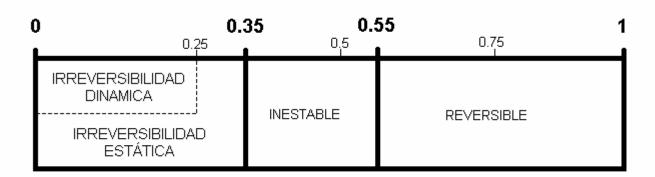
#### 1. IRREVERSIBILIDAD ESTATICA:

Estando el actuador en posición de parada y sin vibraciones: Al aplicar una fuerza a tracción o a compresión (hasta el límite de carga admisible) el actuador no comienza a moverse.

Estas condiciones de irreversibilidad se corresponden con un índice de irreversibilidad inferior a 0,35

#### 2. IRREVERSIBILIDAD DINÁMICA:

- a) Si a un actuador en movimiento con una carga aplicada en oposición al mismo se le desconecta el motor y el actuador se detiene, se dice que es irreversible.
- b) Si un actuador en movimiento puede con una carga aplicada en la misma dirección y se le desconecta el motor, no se garantiza que el actuador se detenga. El actuador se detendrá solo si el coeficiente de irreversibilidad es inferior a 0,25, y en cualquier caso no se detiene siempre en la misma posición. En este caso se recomienda utilizar motor freno para detener el actuador y bloquearlo en la posición deseada, evitando que comience a moverse en caso de vibraciones o tensiones en la carga.


#### 3. IRREVERSIBILIDAD INESTABLE:

Con índices de irreversibilidad situados entre 0,35 y 0,55 los actuadores entran en la zona de irreversibilidad incierta. Aumentando la carga aplicada el actuador puede empezar a moverse.

En estos casos recomendamos utilizar un motor freno para asegurar el bloqueo del actuador o contactar con nuestros técnicos, para analizar la aplicación.

#### 4. REVERSIBILIDAD:

Con índices de irreversibilidad superiores a 0,55 el actuador es siempre reversible. Incluso los actuadores reversibles necesitan de una fuerza pequeña para forzar el arranque del actuador. Esta pequeña fuerza será analizada y dada por nuestros técnicos.





#### 8.- PROGRAMA DE FABRICACION serie UAL

El actuador lineal compacto con el motor eléctrico integrado es idóneo para accionamientos de tracción o compresión.

- El motor de corriente continua esta disponible con o sin freno.
- Es posible suministrar el soporte posterior a 90° respecto al eje del motor.

| ACCESORIOS | Final de carrera magnético | FCM | Divorços tipos do torminalos para al vástago |
|------------|----------------------------|-----|----------------------------------------------|
|            | Soporte posterior SP       |     | Diversos tipos de terminales para el vástago |

#### PRESTACIONES con: Factor de utilización Fi = 30% cada 10 min. a 25 °C Temp. ambiente

La carga estática máxima admisible a tracción es 3000N

Las velocidades lineales y las cargas dinámicas indicadas son valores obtenidos simultáneamente.

| UAL 0 PRESTACIONES CON MOTOR C.C. 24 V o 12 V                        |              |                 |      |      |          |  |  |  |
|----------------------------------------------------------------------|--------------|-----------------|------|------|----------|--|--|--|
| VELOCIDAD LINEAL CARGA RELACIÓN CORRIENTE [A] ÍNDICE DE IRREVERSIBIL |              |                 |      |      |          |  |  |  |
| [mm/s]                                                               | DINÁMICA [N] | DE<br>REDUCCIÓN | 24 V | 12 V | ESTÁTICA |  |  |  |
| 400                                                                  | 120          | RV2             | 4    | 9    | 0.51     |  |  |  |
| 200                                                                  | 230          | RN2             | 4    | 9    | 0.51     |  |  |  |
| 150                                                                  | 260          | RV1             | 4    | 9    | 0.32     |  |  |  |
| 75                                                                   | 470          | RN1             | 4    | 9    | 0.32     |  |  |  |

#### CARACTERÍSTICAS DEL MOTOR DE CORRIENTE CONTINUA 24 V o 12 V

Los motores de corriente continua y excitación magnética permanente no están ventilados y pueden ser con o sin freno.

Cable de alimentación bipolar 2 × 1 mm² largo de 1,5 metros. Peso del motor: 1.3 kg.

| Potencia nominal    | 70 W          |               | Velocidad nominal    | 3000 r.p.m.    |                |
|---------------------|---------------|---------------|----------------------|----------------|----------------|
| Corriente nominal   | 3,7 A (24 V)  | 8,4 A (12 V)  | Par nominal          | 0,22 Nm        |                |
| Corriente max.      | 18 A (24 V)   | 30 A (12 V)   | Par max.             | 1,1 Nm         |                |
| Resistencia         | 0,85 Ω (24 V) | 0,23 Ω (12 V) | Inductancia          | 1.34 mH (24 V) | 0.36 mH (12 V) |
| Grado de protección | IP :          | 54            | Clase de aislamiento | F              | =              |

**MOTOR FRENO:** Se puede servir el motor freno de parada normalmente cerrada y accionamiento electromagnético. Alimentación del freno independiente con cable bipolar 2x1 mm² largo de 1 metro. Peso total del motor con freno 1.8 kg.

| Alimentación | 0,4 A | (24 V) | 0,85 A | (12 V) | Par frenante | 0,5 Nm |
|--------------|-------|--------|--------|--------|--------------|--------|
|              |       |        |        |        |              |        |

ATENCIÓN! Para la apertura del freno se necesita la tensión nominal constante y no acepta falta de tensión.



# CON MOTOR C.A. TRIFÁSICO Y MONOFÁSICO

PRESTACIÓN con: Factor de utilización Fi = 30% cada 10 min. a 25 °C Temp. ambiente

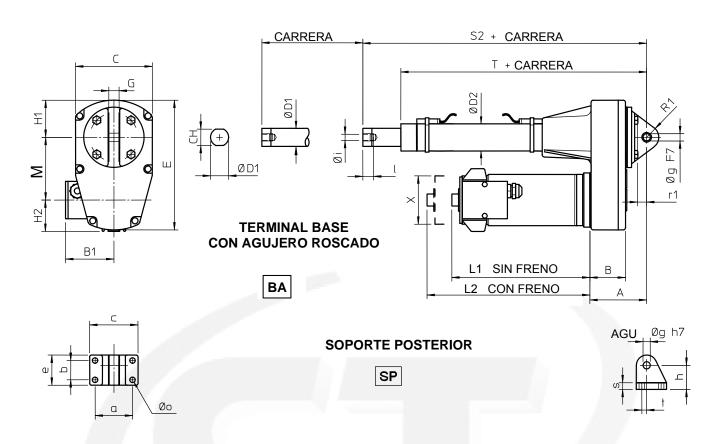
|          | UAL 1                                 |      |                                    |                             |                                              |                                    |  |  |  |  |  |
|----------|---------------------------------------|------|------------------------------------|-----------------------------|----------------------------------------------|------------------------------------|--|--|--|--|--|
| LI<br>[n | OCIDAD<br>NEAL<br>nm/s]<br>MONOFÁSICO | DIN  | ARGA<br>ÁMICA<br>[N]<br>MONOFÁSICO | RELACIÓN<br>DE<br>REDUCCIÓN | MOTOR POTENCIA – N° POLOS VELOCIDAD [R.P.M.] | ÍNDICE DE<br>IRREVERS.<br>ESTÁTICA |  |  |  |  |  |
| 280      | 265                                   | 300  | 300                                | RV2                         | 0,12 Kw 2 polos 2800                         | 0.51                               |  |  |  |  |  |
| 170      | 165                                   | 450  | 450                                | RN2                         | 0,12 Kw 2 polos 2800                         | 0.51                               |  |  |  |  |  |
| 120      | 115                                   | 600  | 600                                | RL2                         | 0,12 Kw 2 polos 2800                         | 0.51                               |  |  |  |  |  |
| 105      | 100                                   | 600  | 600                                | RV1                         | 0,12 Kw 2 polos 2800                         | 0.32                               |  |  |  |  |  |
| 85       | 85                                    | 600  | 600                                | RN2                         | 0,09 Kw 4 polos 1400                         | 0.51                               |  |  |  |  |  |
| 60       | 60                                    | 860  | 860                                | RL2                         | 0,09 Kw 4 polos 1400                         | 0.51                               |  |  |  |  |  |
| 50       | 50                                    | 800  | 800                                | RV1                         | 0,09 Kw 4 polos 1400                         | 0.32                               |  |  |  |  |  |
| 45       | 45                                    | 1200 | 1200                               | RL1                         | 0,12 Kw 2 polos 2800                         | 0.32                               |  |  |  |  |  |
| 32       | 32                                    | 1200 | 1200                               | RN1                         | 0,09 Kw 4 polos 1400                         | 0.32                               |  |  |  |  |  |
| 23       | 23                                    | 1600 | 1600                               | RL1                         | 0,09 Kw 4 polos 1400                         | 0.32                               |  |  |  |  |  |
|          |                                       |      | UAL 2                              | 2                           |                                              |                                    |  |  |  |  |  |
| 265      | 265                                   | 650  | 600                                | RV2                         | 0,25 Kw 2 polos 2800                         | 0.48                               |  |  |  |  |  |
| 175      | 175                                   | 950  | 850                                | RN2                         | 0,25 Kw 2 polos 2800                         | 0.48                               |  |  |  |  |  |
| 130      | 130                                   | 1200 | 1100                               | RL2                         | 0,25 Kw 2 polos 2800                         | 0.48                               |  |  |  |  |  |
| 87       | 87                                    | 1300 | 1200                               | RN2                         | 0,18 Kw 4 polos 1400                         | 0.48                               |  |  |  |  |  |
| 65       | 65                                    | 1950 | 1800                               | RL1                         | 0,25 Kw 2 polos 2800                         | 0.35                               |  |  |  |  |  |
| 43       | 43                                    | 2000 | 2000                               | RN1                         | 0,18 Kw 4 polos 1400                         | 0.35                               |  |  |  |  |  |
| 32       | 32                                    | 2500 | 2500                               | RL1                         | 0,18 Kw 4 polos 1400                         | 0.35                               |  |  |  |  |  |
|          |                                       |      | UAL:                               | 3                           |                                              |                                    |  |  |  |  |  |
| 360      | 360                                   | 1000 | 900                                | RV2                         | 0,55 Kw 2 polos 2800                         | 0.46                               |  |  |  |  |  |
| 180      | 180                                   | 1850 | 1650                               | RN2                         | 0,55 Kw 2 polos 2800                         | 0.46                               |  |  |  |  |  |
| 130      | 130                                   | 2600 | 2350                               | RL2                         | 0,55 Kw 2 polos 2800                         | 0.46                               |  |  |  |  |  |
| 90       | 90                                    | 3000 | 2700                               | RN1                         | 0,55 Kw 2 polos 2800                         | 0.32                               |  |  |  |  |  |
| 64       | 64                                    | 4100 | 3700                               | RL1                         | 0,55 Kw 2 polos 2800                         | 0.32                               |  |  |  |  |  |
| 46       | 46                                    | 3650 | 3300                               | RN1                         | 0,37 Kw 4 polos 1400                         | 0.32                               |  |  |  |  |  |
| 32       | 32                                    | 5100 | 4600                               | RL1                         | 0,37 Kw 4 polos 1400                         | 0.32                               |  |  |  |  |  |
|          |                                       |      | UAL 4                              |                             |                                              |                                    |  |  |  |  |  |
| 450      | 450                                   | 1700 | 1550                               | RV2                         | 1,1 Kw 2 polos 2800                          | 0.46                               |  |  |  |  |  |
| 230      | 230                                   | 3000 | 2700                               | RN2                         | 1,1 Kw 2 polos 2800                          | 0.46                               |  |  |  |  |  |
| 160      | 160                                   | 4300 | 3900                               | RL2                         | 1,1 Kw 2 polos 2800                          | 0.46                               |  |  |  |  |  |
| 115      | 115                                   | 5000 | 4500                               | RN1                         | 1,1 Kw 2 polos 2800                          | 0.32                               |  |  |  |  |  |
| 80       | 80                                    | 6800 | 6100                               | RL1                         | 1,1 Kw 2 polos 2800                          | 0.32                               |  |  |  |  |  |
| 58       | 58                                    | 6200 | 5600                               | RN1                         | 0,75 Kw 4 polos 1400                         | 0.32                               |  |  |  |  |  |
| 40       | 40                                    | 8500 | 7650                               | RL1                         | 0,75 Kw 4 polos 1400                         | 0.32                               |  |  |  |  |  |

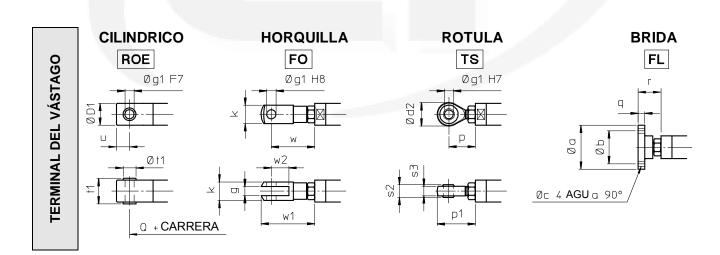


# **CON MOTOR DE CORRIENTE CONTINUA**

PRESTACIÓN con: Factor de utilización Fi = 30% cada 10 min. a 25 °C Temp. ambiente

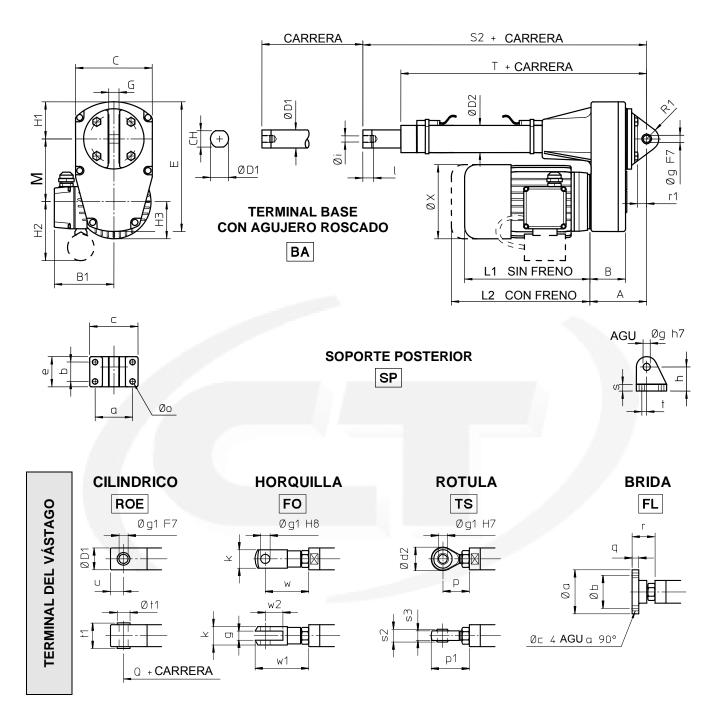
|                     | UAL 1             |             |                                |                            |  |  |  |  |  |  |  |  |
|---------------------|-------------------|-------------|--------------------------------|----------------------------|--|--|--|--|--|--|--|--|
| VELOCIDAD<br>LINEAL | CARGA<br>DINÁMICA | RELACIÓN DE | MOTOR 24 V 150 W 3000 [R.P.M.] | ÍNDICE DE IRREVERSIBILIDAD |  |  |  |  |  |  |  |  |
| [mm/s]              | [N]               | REDUCCIÓN   | CORRIENTE ABSORBIDA [A]        | ESTÁTICA                   |  |  |  |  |  |  |  |  |
| 300                 | 350               | RV2         | 8,5                            | 0.51                       |  |  |  |  |  |  |  |  |
| 185                 | 500               | RN2         | 8,5                            | 0.51                       |  |  |  |  |  |  |  |  |
| 130                 | 700               | RL2         | 8,5                            | 0.51                       |  |  |  |  |  |  |  |  |
| 112                 | 700               | RV1         | 8,5                            | 0.32                       |  |  |  |  |  |  |  |  |
| 70                  | 1000              | RN1         | 8,5                            | 0.32                       |  |  |  |  |  |  |  |  |
| 50                  | 1400              | RL1         | 8,5                            | 0.32                       |  |  |  |  |  |  |  |  |


|                     | UAL 2             |             |                                |                            |  |  |  |  |  |  |  |  |  |
|---------------------|-------------------|-------------|--------------------------------|----------------------------|--|--|--|--|--|--|--|--|--|
| VELOCIDAD<br>LINEAL | CARGA<br>DINÁMICA | RELACIÓN DE | MOTOR 24 V 300 W 3000 [R.P.M.] | ÍNDICE DE IRREVERSIBILIDAD |  |  |  |  |  |  |  |  |  |
| [mm/s]              | [N]               | REDUCCIÓN   | CORRIENTE ABSORBIDA [A]        | ESTÁTICA                   |  |  |  |  |  |  |  |  |  |
| 285                 | 700               | RV2         | 15,5                           | 0.48                       |  |  |  |  |  |  |  |  |  |
| 185                 | 1050              | RN2         | 15,5                           | 0.48                       |  |  |  |  |  |  |  |  |  |
| 140                 | 1350              | RL2         | 15,5                           | 0.48                       |  |  |  |  |  |  |  |  |  |
| 93                  | 1700              | RN1         | 15,5                           | 0.35                       |  |  |  |  |  |  |  |  |  |
| 70                  | 2200              | RL1         | 15,5                           | 0.35                       |  |  |  |  |  |  |  |  |  |


|                               |                          |                          | UAL 3                                                   |                                           |
|-------------------------------|--------------------------|--------------------------|---------------------------------------------------------|-------------------------------------------|
| VELOCIDAD<br>LINEAL<br>[mm/s] | CARGA<br>DINÁMICA<br>[N] | RELACIÓN DE<br>REDUCCIÓN | MOTOR 24 V 500 W 3000 [R.P.M.]  CORRIENTE ABSORBIDA [A] | ÍNDICE DE<br>IRREVERSIBILIDAD<br>ESTÁTICA |
| 384                           | 900                      | RV2                      | 26                                                      | 0.46                                      |
| 200                           | 1600                     | RN2                      | 26                                                      | 0.46                                      |
| 137                           | 2300                     | RL2                      | 26                                                      | 0.46                                      |
| 100                           | 2600                     | RN1                      | 26                                                      | 0.32                                      |
| 68                            | 3600                     | RL1                      | 26                                                      | 0.32                                      |

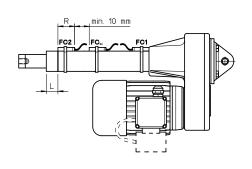
|                     | UAL 4             |             |                                |                              |  |  |  |  |  |  |  |  |
|---------------------|-------------------|-------------|--------------------------------|------------------------------|--|--|--|--|--|--|--|--|
| VELOCIDAD<br>LINEAL | CARGA<br>DINÁMICA | RELACIÓN DE | MOTOR 90 V 750 W 3000 [R.P.M.] | ÍNDICE DE                    |  |  |  |  |  |  |  |  |
| [mm/s]              | [N]               | REDUCCIÓN   | CORRIENTE ABSORBIDA [A]        | IRREVERSIBILIDAD<br>ESTÁTICA |  |  |  |  |  |  |  |  |
| 480                 | 1100              | RV2         | 11                             | 0.46                         |  |  |  |  |  |  |  |  |
| 250                 | 2000              | RN2         | 11                             | 0.46                         |  |  |  |  |  |  |  |  |
| 170                 | 2750              | RL2         | 11                             | 0.46                         |  |  |  |  |  |  |  |  |
| 125                 | 3250              | RN1         | 11                             | 0.32                         |  |  |  |  |  |  |  |  |
| 85                  | 4450              | RL1         | 11                             | 0.32                         |  |  |  |  |  |  |  |  |




# 9.- DIMENSIONES serie UAL MOTOR CORRIENTE CONTINUA. CON FINAL DE CARRERA MAGNÉTICO FCM








# MOTOR C.A. TRIFÁSICO O MONOFÁSICO. CON FINAL DE CARRERA MAGNÉTICO FCM



# DIMENSIONES DEL FINAL DE CARRERA MAGNÉTICO FCM Funcionamiento, regulación, características, y esquemas eléctricos

|       | CONTACTO R   | REED |
|-------|--------------|------|
|       | NC o (NC+NO) | NO   |
|       | L            | L    |
| UAL 1 | 24           | 29   |
| UAL 2 | 32           | 37   |
| UAL 3 | 37           | 42   |
| UAL 4 | 40           | 45   |



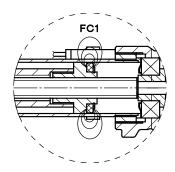


#### **CARRERAS EN STOCK CON FCM**

| CÓDIGO DE CARRERAS | C100 | C200 | C300 | C400 | C500 | C600 | C700 | C800 |
|--------------------|------|------|------|------|------|------|------|------|
| CARRERA [mm]       | 100  | 200  | 300  | 400  | 500  | 600  | 700  | 800  |

Nota:

- Otras carreras bajo pedido.
- En carreras superiores a 800 mm, para evitar el juego radial, es necesario aumentar la longitud guiada entre el vástago y el tubo de protección. Considerar que las cotas **S2** y **T** aumentan 200 mm, para carreras hasta 1500 mm.
- Para carreras superiores a 1500 mm contacten con nuestra oficina técnica.


|       | ۸   | В  | В    | 1   | С   | СН | ØD4 | ØD2 | Е   | G  | H1 | Н    | 2    | Н3   | М     | L    | .1   |
|-------|-----|----|------|-----|-----|----|-----|-----|-----|----|----|------|------|------|-------|------|------|
|       | Α   | ם  | C.C. | C.A | ر   | 5  | ØD1 | ØDZ | L   | 9  | -  | C.C. | C.A. | C.A. | IVI   | C.C. | C.A. |
| UAL 0 | 70  | 45 |      |     | 70  | 22 | 25  | 36  | 142 | 15 | 41 | 41   |      |      | 60    | 137  |      |
| UAL 1 | 82  | 52 | 80   | 110 | 114 | 22 | 25  | 36  | 189 | 15 | 58 | 54   | 75   | 55   | 90    | 177  | 167  |
| UAL 2 | 94  | 60 | 80   | 115 | 127 | 27 | 30  | 45  | 215 | 17 | 64 | 54   | 90   | 62   | 104   | 229  | 193  |
| UAL 3 | 106 | 71 | 80   | 124 | 135 | 30 | 35  | 55  | 247 | 20 | 68 | 54   | 90   | 75   | 121   | 322  | 215  |
| UAL 4 | 120 | 77 | 118  | 141 | 161 | 36 | 40  | 60  | 293 | 24 | 81 | 69   | 95   | 85   | 138.5 | 461  | 235  |

|       | L    |      | R1 | S2  | Т   | Ø    | Х    | а  | b  | С   | е  | g  | h  | i       | 1  | 0  | r1 | s  | t  |
|-------|------|------|----|-----|-----|------|------|----|----|-----|----|----|----|---------|----|----|----|----|----|
|       | C.C. | C.A. |    |     | -   | C.C. | C.A. | •  | •  |     | •  | 9  |    | •       | •  |    |    | •  |    |
| UAL 0 | 183  |      | 13 | 242 | 209 | 58   |      | 54 | 28 | 73  | 46 | 10 | 36 | M10x1,5 | 17 | 9  | 15 | 10 | 4  |
| UAL 1 | 218  | 193  | 17 | 265 | 232 | 107  | 110  | 54 | 28 | 73  | 46 | 10 | 36 | M10x1,5 | 17 | 9  | 18 | 10 | 4  |
| UAL 2 | 270  | 229  | 20 | 284 | 244 | 107  | 123  | 62 | 32 | 80  | 50 | 12 | 40 | M12x1,7 | 18 | 9  | 20 | 11 | 8  |
| UAL 3 | 364  | 304  | 20 | 318 | 274 | 107  | 150  | 72 | 38 | 90  | 58 | 14 | 45 | M14x2   | 24 | 9  | 22 | 12 | 8  |
| UAL 4 | 503  | 340  | 22 | 377 | 323 | 138  | 170  | 85 | 55 | 110 | 81 | 20 | 58 | M20x1,5 | 27 | 11 | 29 | 15 | 15 |

#### **DIMENSIONES DEL TERMINAL DEL VÁSTAGO**

|       | Øa | Øb | Øc  | ØD1 | Ød2 | g  | Øg1 | k  | р  | <b>p1</b> | Q2  | q  | r  | s2 | s3   | t1 | Øt1 | u  | W  | w1  | w2 |
|-------|----|----|-----|-----|-----|----|-----|----|----|-----------|-----|----|----|----|------|----|-----|----|----|-----|----|
| UAL 0 | 55 | 40 | 5,5 | 25  | 28  | 10 | 10  | 20 | 31 | 45        | 242 | 8  | 27 | 14 | 10,5 | 26 | 14  | 15 | 49 | 61  | 20 |
| UAL 1 | 55 | 40 | 5,5 | 25  | 28  | 10 | 10  | 20 | 31 | 45        | 265 | 8  | 27 | 14 | 11   | 26 | 14  | 15 | 49 | 61  | 20 |
| UAL 2 | 60 | 45 | 6,5 | 30  | 32  | 12 | 12  | 24 | 36 | 52        | 287 | 9  | 28 | 16 | 12   | 32 | 16  | 18 | 56 | 70  | 24 |
| UAL 3 | 65 | 50 | 6,5 | 35  | 36  | 14 | 14  | 27 | 36 | 54        | 324 | 9  | 32 | 19 | 14   | 36 | 18  | 21 | 65 | 81  | 28 |
| UAL 4 | 80 | 60 | 8,5 | 40  | 50  | 20 | 20  | 40 | 53 | 78        | 389 | 10 | 42 | 25 | 18   | 42 | 25  | 27 | 90 | 115 | 40 |

#### FINAL DE CARRERA MAGNÉTICO FCM - CARACTERÍSTICAS Y DIMENSIONES



- La distancia mínima entre la REED debe ser al menos de 10 mm.
- Contacto REED Normalmente cerrado (NC)
- Contacto REED cambio (NC+NO) R = 39 mm

R = 39 mm

- Contacto REED Normalmente Abierto (NO) R = 29 mm



#### 10.- PROGRAMA DE FABRICACION SERIE UBA

El actuador lineal compacto con el motor eléctrico integrado es idóneo para accionamientos de tracción o compresión.

- El motor de corriente continua esta disponible con o sin freno.
- Es posible suministrar el soporte posterior a 90° respecto al eje del motor.

| ACCESORIOS | Final de carrera magnético | FCM | Diverses tipos de terminales para el vástago |
|------------|----------------------------|-----|----------------------------------------------|
| ACCESORIOS | Soporte posterior SP       |     | Diversos tipos de terminales para el vástago |

#### PRESTACIONES con: Factor de utilización Fi = 100% cada 10 min. a 25 °C Temp. ambiente

La carga estática máxima admisible en tracción es 3000N

Las velocidades lineales y las cargas dinámicas indicadas son valores obtenidos simultáneamente.

|                                                                             | UBA 0        |           |      |      |             |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|--------------|-----------|------|------|-------------|--|--|--|--|--|--|
| PRESTACIONES CON MOTOR C.C. 24 V o 12 V                                     |              |           |      |      |             |  |  |  |  |  |  |
| VELOCIDAD LINEAL CARGA RELACION DE CORRIENTE [A] INDICE DE IRREVERSIBILIDAD |              |           |      |      |             |  |  |  |  |  |  |
| [mm/s]                                                                      | DINAMICA [N] | REDUCCIÓN | 24 V | 12 V | ESTATICA    |  |  |  |  |  |  |
| 635                                                                         | 85           | RV2       | 4    | 9    | 12.7 × 12.7 |  |  |  |  |  |  |
| 317                                                                         | 170          | RN2       | 4    | 9    | 12.7 × 12.7 |  |  |  |  |  |  |
| 250                                                                         | 210          | RV1       | 4    | 9    | 14 × 5      |  |  |  |  |  |  |
| 125                                                                         | 420          | RN1       | 4    | 9    | 14 × 5      |  |  |  |  |  |  |

#### CARACTERISTICAS DEL MOTOR DE CORRIENTE CONTINUA 24 V o 12 V

Los motores de corriente continua y excitación magnética permanente no están ventilados y pueden ser con o sin freno.

Cable de alimentación bipolar 2 × 1 mm<sup>2</sup> largo de 1,5 metros. Peso del motor: 1.3 kg.

| Potencia nominal    | 70            | W             | Velocidad nominal      | 3000           | r.p.m.         |  |  |  |
|---------------------|---------------|---------------|------------------------|----------------|----------------|--|--|--|
| Corriente nominal   | 3,7 A (24 V)  | 8,4 A (12 V)  | Par nominal            | 0,22 Nm        |                |  |  |  |
| Corriente max.      | 18 A (24 V)   | 30 A (12 V)   | Par max.               | 1,1 Nm         |                |  |  |  |
| Resistencia         | 0,85 Ω (24 V) | 0,23 Ω (12 V) | Inductancia            | 1.34 mH (24 V) | 0.36 mH (12 V) |  |  |  |
| Grado de protección | IP :          | 54            | Clase de aislamiento F |                |                |  |  |  |

**MOTOR FRENO:** Se puede servir motor freno de parada normalmente cerrada y accionamiento electromagnético. Alimentación del freno independiente con cable bipolar 2x1 mm² largo de 1 metro. Peso total del motor con freno 1.8 kg.

| Allinentacion 0,4 A (24 V) 0,03 A (12 V) I al lienante 0,3 Nili | Alimentación | 0,4 A (24 V) | 0,85 A | (12 V) | Par frenante |  |
|-----------------------------------------------------------------|--------------|--------------|--------|--------|--------------|--|
|-----------------------------------------------------------------|--------------|--------------|--------|--------|--------------|--|

ATENCIÓN! Para la apertura del freno se necesita la tensión nominal constante y no acepta falta de tensión.



# CON MOTOR C.A. TRIFASICO Y MONOFASICO

# PRESTACION con: Factor de utilización Fi = 100% cada 10 min. a 25 °C Temp. ambiente

El actuador UBA es reversible, por lo tanto para sostener cargas en posición estática es necesario utilizar motor con freno.

El actuador UBA puede ser utilizado para funcionamiento continuo según las prestaciones indicadas.

|                  |           |             | UBA 1       |                                           |                              |
|------------------|-----------|-------------|-------------|-------------------------------------------|------------------------------|
| VELOCIDAD        | CARGA D   | INAMICA [N] | RELACION DE | MOTOR                                     | INDICE DE                    |
| LINEAL<br>[mm/s] | TRIFASICO | MONOFASICO  | REDUCCIÓN   | POTENCIA – Nº POLOS<br>VELOCIDAD [R.P.M.] | IRREVERSIBILIDAD<br>ESTATICA |
| 175              | 550       | 500         | RV1         | 0,12 kW 2 polos 2800                      | 0.72                         |
| 105              | 900       | 800         | RN1         | 0,12 kW 2 polos 2800                      | 0.72                         |
| 85               | 800       | 750         | RV1         | 0,09 kW 4 polos 1400                      | 0.72                         |
| 75               | 1250      | 1150        | RL1         | 0,12 kW 2 polos 2800                      | 0.72                         |
| 55               | 1250      | 1250        | RN1         | 0,09 kW 4 polos 1400                      | 0.72                         |
| 40               | 1750      | 1750        | RL1         | 0,09 kW 4 polos 1400                      | 0.72                         |
|                  |           |             | UBA 2       |                                           |                              |
| 165              | 1200      | 1100        | RV1         | 0,25 kW 2 polos 2800                      | 0.71                         |
| 110              | 1800      | 1600        | RN1         | 0,25 kW 2 polos 2800                      | 0.71                         |
| 80               | 2300      | 2150        | RL1         | 0,25 kW 2 polos 2800                      | 0.71                         |
| 55               | 2450      | 2400        | RN1         | 0,18 kW 4 polos 1400                      | 0.71                         |
| 40               | 2900      | 2900        | RL1         | 0,18 kW 4 polos 1400                      | 0.71                         |
|                  | 100       |             | UBA 3       |                                           |                              |
| 225              | 1800      | 1800        | RV1         | 0,55 kW 2 polos 2800                      | 0.70                         |
| 110              | 2300      | 2300        | RV1         | 0,37 kW 4 polos 1400                      | 0.70                         |
| 80               | 2600      | 2600        | RL1         | 0,55 kW 2 polos 2800                      | 0.70                         |
| 60               | 2800      | 2800        | RN1         | 0,37 kW 4 polos 1400                      | 0.70                         |
| 40               | 3200      | 3200        | RL1         | 0,37 kW 4 polos 1400                      | 0.70                         |
|                  |           |             | UBA 4       |                                           |                              |
| 265              | 3000      | 2900        | RV1         | 1,1 kW 2 polos 2800                       | 0.70                         |
| 135              | 3600      | 3600        | RV1         | 0,75 kW 4 polos 1400                      | 0.70                         |
| 96               | 4000      | 4000        | RL1         | 1,1 kW 2 polos 2800                       | 0.70                         |
| 70               | 4500      | 4500        | RN1         | 0,75 kW 4 polos 1400                      | 0.70                         |
| 48               | 5000      | 5000        | RL1         | 0,75 kW 4 polos 1400                      | 0.70                         |

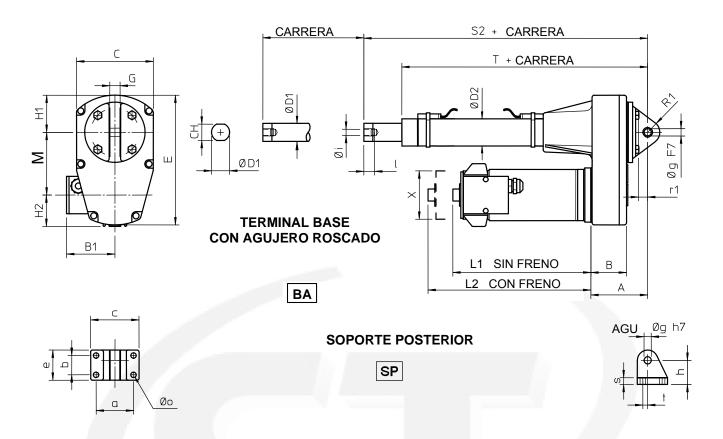


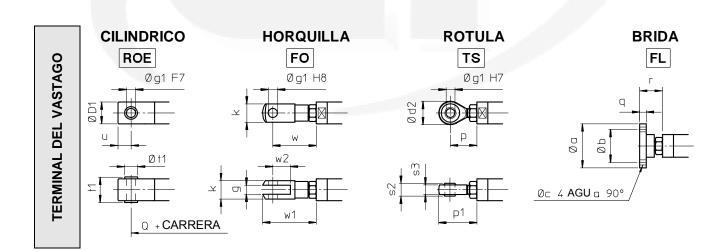
# **CON MOTOR DE CORRIENTE CONTINUA**

PRESTACION con: Factor de utilización Fi = 100% cada 10 min. a 25 °C Temp. ambiente

|                     |                   |                       | UBA 1                          |                            |
|---------------------|-------------------|-----------------------|--------------------------------|----------------------------|
| VELOCIDAD<br>LINEAL | CARGA<br>DINAMICA | RELACION DE REDUCCION | MOTOR 24 V 150 W 3000 [R.P.M.] | INDICE DE IRREVERSIBILIDAD |
| [mm/s]              | [N]               |                       | CORRIENTE ABSORBIDA [A]        | ESTATICA                   |
| 185                 | 650               | RV1                   | 8,5                            | 0.72                       |
| 115                 | 1100              | RN1                   | 9,5                            | 0.72                       |
| 80                  | 1400              | RL1                   | 8,5                            | 0.72                       |

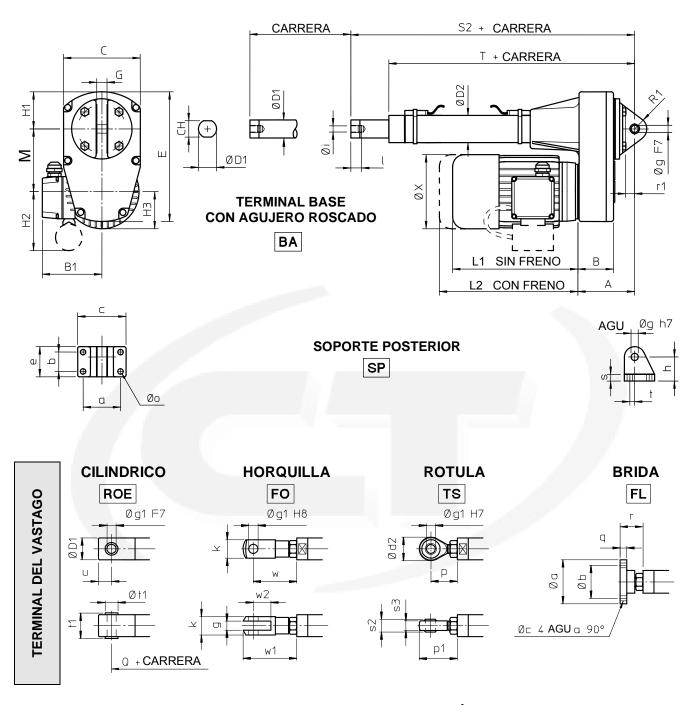
|                               |                          |                          | UBA 2                                                   |                                           |
|-------------------------------|--------------------------|--------------------------|---------------------------------------------------------|-------------------------------------------|
| VELOCIDAD<br>LINEAL<br>[mm/s] | CARGA<br>DINAMICA<br>[N] | RELACION DE<br>REDUCCIÓN | MOTOR 24 V 300 W 3000 [R.P.M.]  CORRIENTE ABSORBIDA [A] | INDICE DE<br>IRREVERSIBILIDAD<br>ESTATICA |
| 180                           | 1400                     | RV1                      | 17,5                                                    | 0.71                                      |
| 120                           | 2000                     | RN1                      | 16,5                                                    | 0.71                                      |
| 90                            | 2250                     | RL1                      | 14                                                      | 0.71                                      |


|                               |                          |                          | UBA 3 |      |                             |                                           |
|-------------------------------|--------------------------|--------------------------|-------|------|-----------------------------|-------------------------------------------|
| VELOCIDAD<br>LINEAL<br>[mm/s] | CARGA<br>DINAMICA<br>[N] | RELACION DE<br>REDUCCION |       |      | 3000 [R.P.M.]<br>ORBIDA [A] | INDICE DE<br>IRREVERSIBILIDAD<br>ESTATICA |
| 240                           | 1600                     | RV1                      |       |      | 26                          | 0.70                                      |
| 125                           | 2200                     | RN1                      |       |      | 20                          | 0.70                                      |
| 85                            | 2500                     | RL1                      |       | 15,5 | NOTA (1)                    | 0.70                                      |


NOTA (1): Prestaciones obtenidas con Motor C.C. 24v, 300w

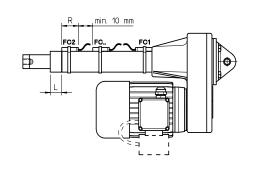
|                     |                   |                          | UBA 4                          |                            |
|---------------------|-------------------|--------------------------|--------------------------------|----------------------------|
| VELOCIDAD<br>LINEAL | CARGA<br>DINAMICA | RELACION DE<br>REDUCCION | MOTOR 90 V 750 W 3000 [R.P.M.] | INDICE DE IRREVERSIBILIDAD |
| [mm/s]              | [N]               |                          | CORRIENTE ABSORBIDA [A]        | ESTATICA                   |
| 290                 | 1900              | RV1                      | 11                             | 0.70                       |
| 150                 | 3400              | RN1                      | 11                             | 0.70                       |
| 100                 | 4000              | RL1                      | 8,5                            | 0.70                       |




# 11.- DIMENSIONES serie UBA MOTOR CORRIENTE CONTINUA. CON FINAL DE CARRERA MAGNÉTICO FCM








# MOTOR C.A. TRIFASICO O MONOFASICO. CON FINAL DE CARRERA MAGNÉTICO FCM



DIMENSIONES DEL FINAL DE CARRERA MAGNÉTICO FCM Funcionamiento, regulación, características, y esquemas eléctricos

|       | CONTACTO     | REED |
|-------|--------------|------|
|       | NC o (NC+NO) | NO   |
|       | L            | L    |
| UBA 1 | 42           | 47   |
| UBA 2 | 51           | 56   |
| UBA 3 | 59           | 64   |
| UBA 4 | 69           | 74   |



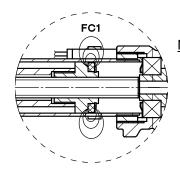


#### **CARRERAS EN STOCK CON FCM**

| CODIGO DE CARRERAS | C100 | C200 | C300 | C400 | C500 | C600 | C700 | C800 |
|--------------------|------|------|------|------|------|------|------|------|
| CARRERA [mm]       | 100  | 200  | 300  | 400  | 500  | 600  | 700  | 800  |

Nota:

- Otras carreras bajo pedido.
- En carreras superiores a 800 mm, para evitar el juego radial, es necesario aumentar la longitud guiada entre el vástago y el tubo de protección. Considerar que las cotas **S2** y **T** aumentan 200 mm, para carreras hasta 1500 mm.
- Para carreras superiores a 1500 mm contacten con nuestra oficina técnica.
- El tubo del actuador tiene diámetro diferente según sea RV1 y RN1 o RV2 y RN2


|       |     |    | В    | 31   |     |    |     |     |     |    |    | Н    | 2    | Н3   |       | L    | .1   |
|-------|-----|----|------|------|-----|----|-----|-----|-----|----|----|------|------|------|-------|------|------|
|       | Α   | В  | C.C. | C.A. | С   | СН | ØD1 | ØD2 | E   | G  | H1 | C.C. | C.A. | C.A. | M     | C.C. | C.A. |
| UBA 0 | 70  | 45 | 40   | -    | 70  | 22 | 25  | 36  | 142 | 15 | 41 | 41   | -    | -    | 60    | 137  | -    |
| UBA 1 | 82  | 52 | 80   | 110  | 114 | 22 | 25  | 36  | 189 | 15 | 58 | 54   | 75   | 55   | 90    | 177  | 167  |
| UBA 2 | 94  | 60 | 80   | 115  | 127 | 27 | 30  | 45  | 215 | 17 | 64 | 54   | 90   | 62   | 104   | 229  | 193  |
| UBA 3 | 106 | 71 | 80   | 124  | 135 | 30 | 35  | 55  | 247 | 20 | 68 | 54   | 90   | 75   | 121   | 322  | 215  |
| UBA 4 | 120 | 77 | 118  | 141  | 161 | 36 | 40  | 60  | 293 | 24 | 81 | 69   | 95   | 90   | 138.5 | 461  | 235  |

|       | C.C. |     | R1 | S2  | Т   | Ø<br>C.C. |     | а  | b  | С   | е  | g  | h  | ı        | I  | 0  | r1 | s  | t  |
|-------|------|-----|----|-----|-----|-----------|-----|----|----|-----|----|----|----|----------|----|----|----|----|----|
| UBA 0 | 183  |     | 13 | 264 | 229 | 58        | -   | 54 | 28 | 73  | 46 | 10 | 36 | M10x1,5  | 17 | 9  | 15 | 10 | 4  |
| UBA 1 | 218  | 193 | 17 | 287 | 250 | 107       | 110 | 62 | 32 | 80  | 50 | 12 | 40 | M10x1,5  | 17 | 9  | 18 | 11 | 8  |
| UBA 2 | 270  | 229 | 20 | 307 | 263 | 107       | 123 | 62 | 32 | 80  | 50 | 12 | 40 | M12x1,75 | 18 | 9  | 20 | 11 | 8  |
| UBA 3 | 364  | 304 | 20 | 342 | 296 | 107       | 150 | 72 | 38 | 90  | 58 | 14 | 45 | M14x2    | 24 | 9  | 22 | 12 | 8  |
| UBA 4 | 503  | 340 | 22 | 406 | 352 | 138       | 170 | 85 | 55 | 110 | 81 | 20 | 58 | M20x1,5  | 27 | 11 | 29 | 15 | 15 |

#### **DIMENSIONES DEL TERMINAL DEL VÁSTAGO**

|       | Øa | Øb | Øc  | ØD1 | Ød2          | 7  | Øa1 | k  | 2  | n1 | G          | 2          | 2  | r  | s2 | s3   | t1 | Øt1 | u  | w  | w1  | w2 |
|-------|----|----|-----|-----|--------------|----|-----|----|----|----|------------|------------|----|----|----|------|----|-----|----|----|-----|----|
|       | νa | 20 | عاص | וטש | Ø <b>u</b> z | g  | Øg1 | •  | р  | р1 | RV1<br>RN1 | RV2<br>RN2 | q  |    | 52 | 30   | ι, | צנו | u  | W  | WI  | WZ |
| UBA 0 | 55 | 40 | 5,5 | 25  | 28           | 10 | 10  | 20 | 31 | 45 | 264        | 286        | 8  | 27 | 14 | 10,5 | 26 | 14  | 15 | 49 | 61  | 20 |
| UBA 1 | 55 | 40 | 5,5 | 25  | 28           | 12 | 10  | 20 | 31 | 45 | 28         | 37         | 8  | 27 | 14 | 11   | 26 | 14  | 15 | 49 | 61  | 20 |
| UBA 2 | 60 | 45 | 6,5 | 30  | 32           | 12 | 12  | 24 | 36 | 52 | 3′         | 10         | 9  | 28 | 16 | 12   | 32 | 16  | 18 | 56 | 70  | 24 |
| UBA 3 | 65 | 50 | 6,5 | 35  | 36           | 14 | 14  | 27 | 36 | 54 | 34         | 48         | 9  | 32 | 19 | 14   | 36 | 18  | 21 | 65 | 81  | 28 |
| UBA 4 | 80 | 60 | 8,5 | 40  | 50           | 20 | 20  | 40 | 53 | 78 | 41         | 18         | 10 | 42 | 25 | 18   | 42 | 25  | 27 | 90 | 115 | 40 |

#### FINAL DE CARRERA MAGNÉTICO FCM - CARACTERISTICAS Y DIMENSIONES



Nota: - Le pueden colocar mas REED magnéticos en posición intermedia.

- La distancia mínima entre la REED debe ser al menos de 10 mm.

- Contacto REED Normalmente cerrado (NC) R = 39 mm

- Contacto REED cambio (NC+NO) R = 39 mm

- Contacto REED Normalmente Abierto (NO) R = 29 mm

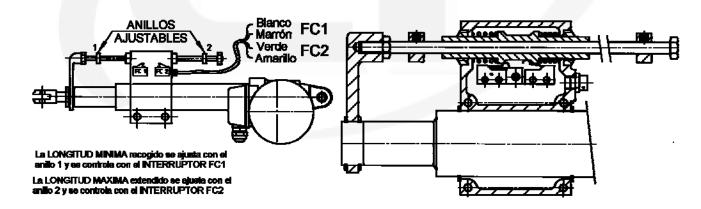
SAC31

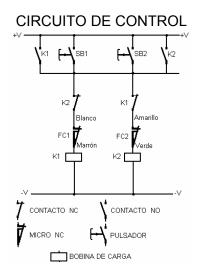


#### 12.- FINALES DE CARRERA

#### DISPOSITIVO FINAL DE CARRERA ELECTRICO FCE

El dispositivo final de carrera eléctrico FCE permite parar el actuador antes de que este alcance el extremo final (parada mecánica) evitando así dañarlo. Es muy robusto y de gran fiabilidad idóneo para utilizar en cualquier ambiente. Está disponible para todas las longitudes estándar de carrera y bajo pedido para longitudes de carrera especiales de hasta un metro.


El dispositivo FCE consta de 2 interruptores eléctricos normalmente cerrados alojados en el interior de una carcasa de aluminio sellada. Tiene un tubo interno con rebajes, el cual, por su forma característica, permite la activación de los interruptores eléctricos. Se mueve entre dos muelles opuestos helicoidales, que resetean la posición cuando el actuador comienza de nuevo a moverse en la dirección contraria. La estanqueidad del casquillo móvil viene dada por collares. La activación del casquillo móvil, y en consecuencia de los finales de carrera, en una dirección o en la opuesta se realiza mediante una barra de acero inoxidable que se mueve con el vástago móvil. La barra de acero inoxidable se desliza dentro del casquillo activándolo cuando los anillos ajustables 1 y 2 lo presionan.


La posición de paro es fácilmente ajustable: el anillo 1 detiene el actuador cuando se recoge, mientras que el anillo 2 lo detiene en su posición extendida. El ajuste de estos dos anillos se realiza directamente sobre el eje cilíndrico del actuador, por lo que es muy sencillo ajustar la posición de paro del actuador.

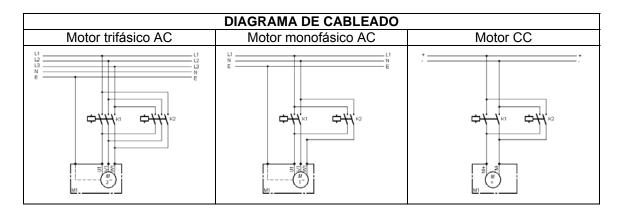
La longitud total de la carrera del actuador se puede variar colocando los anillos 1 y 2 en los extremos. Incluso en estas condiciones, hay una longitud de carrera de seguridad en ambos lados antes de alcanzar las paradas mecánicas.

**NOTA:** ¡La longitud de carrera adicional de seguridad dada, no se puede utilizar! Si la aplicación requiere una longitud de carrera superior para parar el actuador, consultar con nuestros técnicos.

**PRECAUCION:** Comparar la longitud de carrera requerida por la aplicación con las dimensiones del actuador (comprobar con el manual de mantenimiento entregado con el actuador). El dispositivo FCE solamente controla la longitud de carrera del actuador, por lo que la longitud de carrera necesaria para la aplicación debe adaptarse a ella y no puede ser mayor.






El dispositivo FCE se recomienda para velocidades lineales no superiores a 30 mm/sg. Para velocidades superiores se recomienda utilizar finales de proximidad inductivos o magnéticos, ya que en la desconexión del motor, por motivos de inercias, el actuador podría rebasar la posición final dañando el FCE y rompiendo la leva frontal. La parada se puede reforzar con un motor freno.

| Tensión  | Carga resistiva | Carga inductiva |
|----------|-----------------|-----------------|
| 250 V AC | 5 A             | 3A              |
| 30 V DC  | 5 A             | 0.1 A           |
| 125 V DC | 1,4 A           | -               |

El dispositivo FCE se sirve con manguera estándar de 1,5 m de longitud y 4 cables de  $0.75~\mathrm{mm}^2$ .

También disponibles bajo pedido mangueras de mayor longitud e interruptores eléctricos de 10 A.





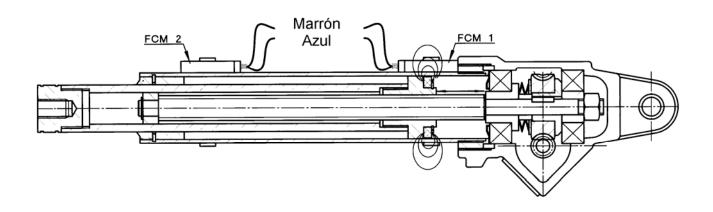
#### DISPOSITIVO FINAL DE CARRERA MAGNETICO FCM

El final de carrera magnético FCM permite parar el actuador antes de que alcance el extremo final (parada mecánica) evitando así dañarlo.

Se pueden utilizar más detectores para dar más posiciones intermedias a lo largo de la longitud de la carrera. Estos detectores se pueden utilizar tanto para parar el actuador como para conocer su posición durante un desplazamiento lineal.

Un anillo magnético adaptado en el vástago de desplazamiento crea alrededor del tubo de protección un campo magnético toroidal de 100 Gauß.

Los detectores fijado en el tubo exterior con abrazaderas se activan con el campo magnético toroidal, independientemente del ángulo en que se haya posicionado.

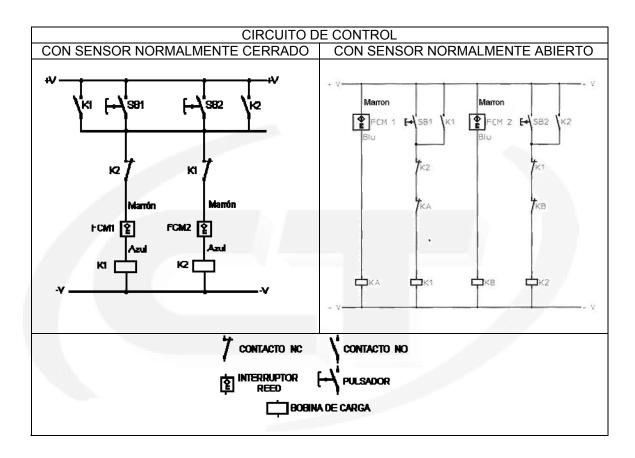

Se utilizan tubos exteriores de materiales no magnéticos como aluminio o acero inoxidable, para permitir al campo magnético activar los detectores.

El tubo de protección estándar con dispositivos FCM está hecho en aluminio anodizado; también está disponible bajo pedido en acero inoxidable.

Los detectores se adaptarán con abrazaderas de material no metálico, para que puedan ser activados. Se deben montar por la cara donde el número de código se lee hacia arriba (el número de código debe quedar visible).

**PRECAUCIÓN:** No se puede sobrepasar las características máximas dadas en este catálogo y en el manual de mantenimiento que se entrega con el actuador para no dañar el actuador y no realizar mal uso del mismo!

Los detectores sólo pueden trabajar si están conectados al circuito de control para activar el relé eléctrico. No conectarlos en serie entre la fuente de alimentación y el motor eléctrico.






**IMPORTANTE:** Los actuadores equipados con detectores FCM proporcionan un desplazamiento lineal más corto que su longitud codificada de carrera. Esto es así ya que el interruptor FCM1 da una señal de paro al actuador antes de que este haya recorrido la longitud total de carrera. Para conocer la diferencia entre carrera real y carrera codificada, dirigirse a las tablas de LONGITUD DE CARRERA DISPONIBLE EN STOCK CON FCM en las páginas de dimensiones.

Si se utilizan más detectores para obtener posiciones intermedias, se debe tener en cuenta que el mismo detector puede dar la señal en dos momentos diferentes dependiendo del movimiento del actuador, el cual puede estar extendiéndose o recogiéndose. Para saber la diferencia entre estas dos posiciones dirigirse a nuestros técnicos.

La posición de los detectores es fácilmente ajustable cambiando la posición de las abrazaderas en el tubo exterior.



Los límites de posición de los detectores son los siguientes:

- MIN: POSICIÓN RECOGIDO: El detector se amarra en el tubo hasta la carcasa del actuador.
- MAX. POSICIÓN EXTENDIDO: El detector no puede exceder el límite marcado en el tubo exterior.

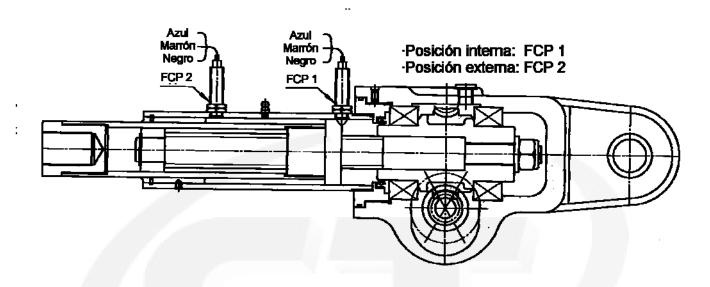
La posición límite se puede ver en las páginas de dimensiones para longitudes de carrera de hasta 800 mm. Para longitudes especiales de carrera, mayores de 800 mm, para conocer la posición límite dirigirse a nuestros técnicos.

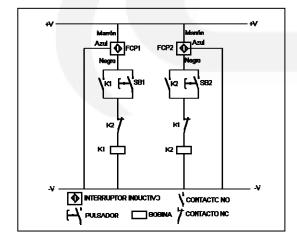
NOTA: El dispositivo antirrotación AR no está disponible cuando el actuador se sirve con FCM.

|                      | DC                       | AC       |  |  |
|----------------------|--------------------------|----------|--|--|
| Tensión              | 3 130 Vdc                | 3130 Vac |  |  |
| Potencia máxima      | 20 W                     | 20 VA    |  |  |
| Corriente máxima     | 300 mA (carga resistiva) |          |  |  |
| Max. Carga inductiva | 3W                       |          |  |  |

Los detectores se sirve con manguera estándar de 2m de longitud y cables 2 x 0.25 mm<sup>2</sup>.

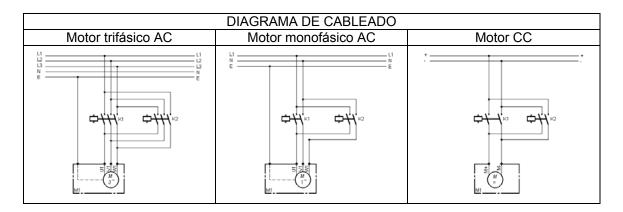



#### DISPOSITIVO FINAL DE CARRERA INDUCTIVO O DE PROXIMIDAD FCP


El final de carrera inductivo FCP o de proximidad permite parar el actuador antes de que alcance el extremo final (parada mecánica) evitando así dañarlo.

También permite ajustar posiciones intermedias a lo largo de la carrera del actuador.

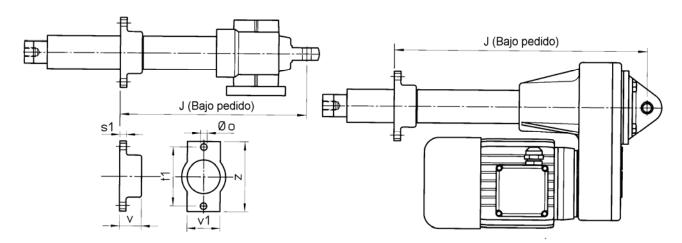
Los interruptores de proximidad inductivos se amarran directamente en el tubo exterior del actuador en la posición requerida.


**IMPORTANTE:** Su posición no es ajustable, viene prefijada en su montaje. Los detectores de proximidad son normalmente cerrados.



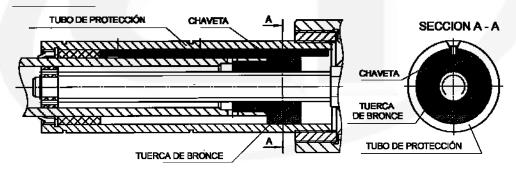


| Tensión                  | 10 30 V dc |
|--------------------------|------------|
| Max. Corriente de salida | 200 mA     |
| Caída de tensión         | <1.8 V     |


Los detectores de proximidad se sirven con manguera estándar de 2 m con 3 cables de 0.2 mm<sup>2</sup>.






#### 13.- ACCESORIOS

#### **BRIDA INTERMEDIA FI**



|           | t1  | Øo | s1 | ٧  | v1 | Z   |
|-----------|-----|----|----|----|----|-----|
|           | 70  | 9  | 9  | 30 | 40 | 85  |
| UAL/UBA 1 | 70  | 9  | 9  | 30 | 40 | 85  |
| UAL/UBA 2 | 80  | 9  | 9  | 30 | 45 | 95  |
| UAL/UBA 3 | 85  | 9  | 10 | 35 | 50 | 100 |
| UAL/UBA 4 | 100 | 11 | 12 | 45 | 60 | 120 |

#### DISPOSITIVO ANTIRROTACIÓN AR

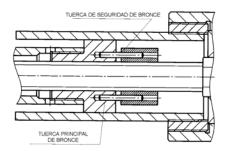


Para obtener un movimiento lineal regular y preciso, es necesario evitar el movimiento de rotación de la tuerca y del vástago unido a ella. En algunas aplicaciones es la propia estructura la que se acopla al vástago evitando la rotación, dando así el movimiento lineal.

En otras aplicaciones, la carga aplicada en el vástago no se puede guiar, por lo que no se puede evitar la rotación. En estos casos se hace necesario el uso del dispositivo de antirrotación AR.

El dispositivo antirrotación permite el movimiento lineal sin ninguna reacción externa en el vástago. Puede ser solicitado bajo pedido (Código AR).

Los actuadores que pueden utilizar el dispositivo antirrotación AR son: -UAL 2, UAL 3, UAL 4.

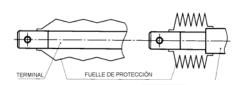

#### No es posible su uso con:

- -Todas las series de actuadores lineales de husillo de bolas.
- -UAL 0, UAL 1.
- -Todos los actuadores equipados con finales de carrera magnéticos FCM.

El dispositivo antirrotación mostrado en el dibujo superior está hecho con un chaveta de acero fijada y alineada longitudinalmente en el tubo de protección. La tuerca de bronce es guiada por esta chaveta deslizándose durante el movimiento del vástago.



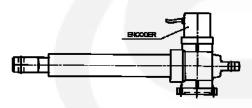
#### **TUERCA DE SEGURIDAD MSB**




La tuerca de seguridad es una tuerca auxiliar de bronce unida a la tuerca de trabajo, y que se mueve solidaria con ésta. La distancia entre las dos tuercas, es igual a la mitad del paso de rosca del husillo. Si la tuerca de trabajo se desgasta y choca con la tuerca de seguridad, ésta soportará la carga evitando que caiga.

La tuerca de seguridad es un dispositivo de seguridad en una sola dirección. Su posición respecto a la tuerca de trabajo dependerá de la dirección de la carga. La tuerca de seguridad se utiliza en actuadores que trabajan empujando carga (compresión).

Las aplicaciones en las que haya que tirar de la carga (tracción), necesitan un diseño especial, consultar con nuestros técnicos.


#### FUELLE DE PROTECCIÓN B



Cuando los actuadores se utilizan en unas condiciones especialmente agresivas: polvos,, humedad, viruta... que pueden dañar el actuador, resulta muy útil el empleo de fuelles.

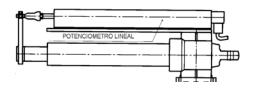
Los fuelles están hechos de un material especial para soportar condiciones extremadamente duras y se sirven bajo pedido.

#### **ENCODER INCREMENTAL ROTATIVO**



Los encoders incrementales rotativos colocados en el eje de entrada se utilizan para control de posicionamiento. Los encoders EH 53 están disponibles para todos los actuadores excepto para los UAL 0 - UBA 0.

Para estos actuadores se pueden montar los encoders EH 38, sólo con motores CC.


Se monta en el lado opuesto al motor o en un eje solidario a este.

PRECAUCION: Los encoders rotativos colocados en el eje de entrada, no se pueden utilizar en actuadores equipados con limitador de para FS, ya que el control de posicionamiento se perderá por el deslizamiento del FS.

#### Características del encoder EH53:

- Bidireccional, con pulso de 0.
- 100 o 500 pulsos por vuelta.
- Electrónica push-pull.
- Alimentación 5Vcc o 8÷24 Vcc.

#### **DISPOSITIVOS DE CONTROL DE POSICION**



Existen bajo pedido diferentes dispositivos de control de posición:

- Potenciómetro lineal.
- Encoder lineal absoluto.
- Tacogenerador.
- Encoder rotativo absoluto.

Para mayor información dirigirse a nuestros técnicos.



# 14.- INSTALACIÓN, MANUTENCION Y LUBRIFICACION

1. Los actuadores lineales solo se deben instalar para trabajar con cargas axiales de empuje o tiro. No admiten cargas laterales radiales.

Los amarres frontales y traseros deben ser analizados cuidadosamente, durante el estudio de la aplicación. Cuando la instalación, por razones constructivas no, puede garantizar el paralelismo entre los ejes de fijación anterior y posterior, se recomienda utilizar el terminal de rótula TS.

Un correcto alineamiento evitará daños en el actuador, y prevendrá la pérdida de lubricante.

- 2. La longitud mínima de recogida del actuador (Lc) y la longitud máxima (La) son los límites.. Asegurarse de que la aplicación no requiere desplazamientos lineales mayores que la longitud fijada por estos límites.
- 3. Antes de utilizar el actuador lineal, se deben realizar las siguientes comprobaciones:
- Comprobar que la dirección de giro del eje del motor coincide con la dirección de desplazamiento del vástago.
- Comprobar la posición de los finales de carrera: No pueden exceder los límites dados.
- Asegurarse de que el cableado del motor eléctrico y de los finales de carrera se ha realizado de forma correcta, y que la tensión utilizada es la adecuada.
- 4. Para conocer más detalles sobre la instalación, dirigirse al apartado de instalación del manual de mantenimiento:
- Cod. 20.I.04 Series UAL / UBA

Los actuadores lineales no requieren mantenimiento y se sirven con lubricante de larga vida. El mantenimiento es necesario solo en caso de pérdidas de aceite o averías. Lubricantes recomendados:

En rodamientos (Series UAL): SHELL ALVANIA R2

En husillo y tuerca: SHELL SUPER GREASE AM
 En husillo de bolas y tuerca: KLÜBER ISOFLEX NBU 15

La siguiente tabla muestra la cantidad de lubricante necesaria para cada tamaño y longitud de actuador:

#### **UAL - UBA**

|                        | RODAMIENTOS            |                   | HUSILLO – TUERCA |                                             |                                   |  |
|------------------------|------------------------|-------------------|------------------|---------------------------------------------|-----------------------------------|--|
| 7000                   |                        |                   | CANTIDAD (gr)    |                                             |                                   |  |
| TAMAÑO DEL<br>ACTUADOR | LUBRICANTE             | CANTIDA<br>D (gr) | LUBRICANT<br>E   | Para los<br>primeros<br>100mm de<br>carrera | Para cada<br>100mm<br>adicionales |  |
| UAL 0                  |                        | 30                |                  | 20                                          | 20                                |  |
| UAL 1                  | SHELL                  | 30                |                  | 20                                          | 20                                |  |
| UAL 2                  |                        | 30                | SHELL            | 30                                          | 25                                |  |
| UAL 3                  | ALVANIA                | 40                | SUPER            | 40                                          | 30                                |  |
| UAL 4                  | GREASE R2              | 50                | GREASE AM        | 50                                          | 40                                |  |
| UBA 0                  |                        | 30                |                  | 10                                          | 10                                |  |
| UBA 1                  |                        | 30                |                  | 10                                          | 10                                |  |
| UBA 2                  | SHELL 30<br>ALVANIA 40 | 30                | KLÜBER           | 15                                          | 12                                |  |
| UBA 3                  |                        | 40                | ISOFLEX          | 20                                          | 15                                |  |
| UBA 4                  | GREASE R2              | 50                | NBU<br>15        | 25                                          | 20                                |  |



#### LUBRICANTES:

| MARCA<br>REGISTRADA |                             | LUBRICANTES              |                      |
|---------------------|-----------------------------|--------------------------|----------------------|
| SHELL               | TVX COMPOUND B              | SUPER GREASE AM          | ALVANIA R2           |
| IP                  | TELESIA COMPOUND B          | BIMOL GREASE 481         | ATHESIA CR           |
| AGIP                | GR SLL                      | GR SM                    | -                    |
| ESSO                | TRANSMISION GREASE<br>FP    | MP GREASE MOLY           | (ANDOK 260, CAZAR K) |
| CASTROL             | ALPHA GEL                   | MS 3; SPHEEROL LMM       | SPHEEROL APT         |
| MOBIL               | GLYCOYLE GREASE 00          | MOBILGREASE SPECIAL      | MOBILUX 2            |
| TOTAL               | CARTER SY 00                | MULTIS MS                | 1                    |
| KLÜBER              | KLÜBERSYNTH GE 46 -<br>1200 | KLÜBERPASTE 46 MR<br>401 | ISOFLEX NBU 15       |

En caso de que haya que añadir más lubricante por problemas de fugas, recomendamos seguir las instrucciones marcadas en el capítulo de instalación del manual de mantenimiento.

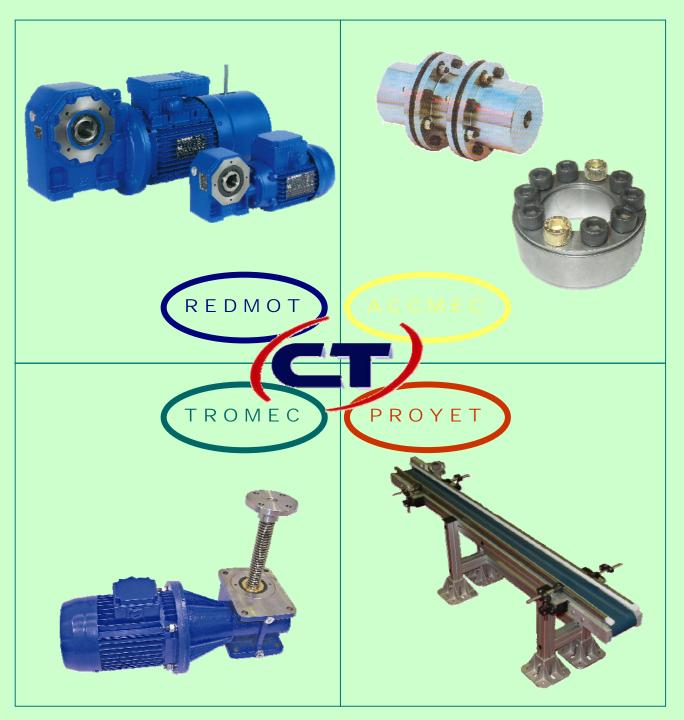
Los actuadores UAL 3 –4 llevan engrasador sobre el tubo de protección exterior. Es recomendable rellenar con lubricante solo en caso de necesidad, ya que demasiado lubricante podría requerir aumento de potencia durante el desplazamiento y produciría posterior pérdida de aceite.

#### 15.- VERSIONES ESPECIALES

Existen bajo pedido versiones especiales de actuadores, que se ajustan con los requerimientos de ciertas aplicaciones especiales.

Nuestra empresa, con gran experiencia en este campo, le puede ayudar en la selección del actuador idóneo para su aplicación, la versión correcta y los accesorios necesarios, además de las condiciones de instalación.

Están disponibles los siguientes accesorios:


- Vástago de acero inoxidable AISI 304.
- Tubo protector exterior de acero inoxidable AISI 304.
- Lubricantes especiales para condiciones de altas o bajas temperaturas.
- Lubricantes especiales para el sector alimenticio.
- Rascadores de doble labio en aceite.
- Retén de Viton para alta temperatura, o sellado con silicona para baja temperatura.
- Retenes especiales para condiciones extremas.



#### **DIVISIONES DE PRODUCTOS COTRANSA**:

| MOTORREDUCTORES E-mail: luisleon@cotransa.net                    | CATÁLOGOS  |
|------------------------------------------------------------------|------------|
| REDUCTORES Y MOTORREDUCTORES DE SIN FIN CORONA                   | CRA05      |
| REDUCTORES Y MOTORREDUCTORES COAXIALES                           |            |
| REDUCTORES Y MOTORREDUCTORES SIN FIN CORONA SERIE FIT            | <u></u>    |
| REDUCTORES Y MOTORREDUCTORES SERIE ALUMINIO                      | <u> </u>   |
| REDUCTORES Y MOTORREDUCTORES COAXIALES SERIE WES                 |            |
| REDUCTORES Y MOTORREDUCTORES PARALELOS                           |            |
| REDUCTORES Y MOTORREDUCTORES PLANETARIOS DE SERIE MEDIA Y PESADA |            |
| REDUCTORES RUEDA Y CON MOTOR HIDRÁULICO                          | DH00       |
| CABRESTANTES ELEVACIÓN                                           | DC02       |
| CABRESTANTES TIRO                                                | DCT04      |
| MOTORES ELECTRICOS                                               | TX 09      |
| ACCESORIOS MECÁNICOS E-mail: jm.leon@cotransa.net                |            |
| ACOPLAMIENTOS Y JUNTAS UNIVERSALES                               | AC03       |
| UNIDADES CÓNICAS DE FIJACIÓN                                     | TL04       |
| ENGRANES, CREMALLERAS Y CADENAS                                  | EC96       |
| POLEAS Y CORREAS                                                 | PC96       |
| LIMITADORES DE PAR Y POLEAS VARIADORAS                           | DM98       |
| ACOPLAMIENTOS DE LAMINAS                                         | SF05       |
| MECATRÓNICA E-mail: tromec@cotransa.net                          |            |
| GATO MECANICO                                                    |            |
| ACTUADORES LINEALES SERIE ATL/BSA                                |            |
| ACTUADORES LINEALES SERIE UAL/UBA                                | SAC09      |
| ACTUADORES LINEALES SERIE LIGERA                                 | AL09       |
| MESAS DE GIRO INTERMITENTE                                       | T04        |
| INDEXADORES PARALELOS Y ORTOGONALES                              | OAP96      |
| MAQUINAS DE ENSAMBLAJE ROTATIVAS Y LINEALES                      | TC99       |
| UNIDADES LINEALES XX                                             | EXY05      |
| UNIDADES LINEALES YZ                                             | EYZ05      |
| ACCIONAMIENTOS ELECTRÓNICOS                                      | CT01       |
| ANILLOS DE GIRO INTERMITENTE                                     | AR08       |
| SERVOMOTORREDUCTORES DE SIN FIN                                  | SR04       |
| SEVOMOTORREDUCTORES PLANETARIOS DE PRECISIÓN                     | SM 03      |
| TRANSPORTADOR MECÁNICO DE PRECISIÓN PASO A PASO                  | TEC 08     |
| PROYECTOS DE INGENIERÍA E-mail: borja@cotransa.n                 | <u>net</u> |
| SISTEMAS DE PERFILES DE ALUMINIO                                 | PA04       |
| PROTECCIONES DE MAQUINARIA                                       |            |
| TRANSPORTADORES DE BANDA Y DE RODILLOS                           |            |
| RODILLOS MOTORIZADOS Y DE MANUTENCIÓN                            |            |
| MANIPULADORES DE EJES CARTESIANOS                                |            |
| CADENAS TRANSPORTADORAS DE PASO LARGO Y DE MALLAS                | ET09       |

Se ruega que en caso de necesitar alguno de los catálogos envíe al Fax: +34 94 471 03 45 esta hoja, marcando con una "X" los que sean de su interés o solicitándolos a los E-mails indicados.





#### FABRICA, ALMACEN Y OFICINAS

POLIGONO INDUSTRIAL TROBIKA. C/LANDETA Nº4

**MUNGIA 48100 BIZKAIA** 

TFNO.: 94 471 01 02\* FAX: 94 471 03 45

#### **DISTRIBUIDOR:**

**DELEGACIONES:** 

COTRANSA BARCELONA TFNO.: 656 77 88 97

E-mail: borja@cotransa.net

COTRANSA MADRID TFNO.: 610 22 61 84

E-mail: borja@cotransa.net

COTRANSA ZARAGOZA TFNO.: 607 54 83 86

E-mail: estebanmarco@cotransa.net

COTRANSA GUIPUZCOA TFNO.: 620 56 08 92 E-mail: javier@cotransa.net

E-mail:cotransa@cotransa.net